e-1SSN: 3027-0650
Vol. 3, Issue 1, 667-679., October 30-Novermber 1, 2025

A COMPUTATIONAL INTELLIGENCE APPROACH FOR SOLVING
MULTI-TERM FRACTIONAL DIFFERENTIAL EQUATIONS IN
ENGINEERING SYSTEMS.

Solomon O. Ojobo?, Ajayi Enock?, Muhammadu Abdullahi®, Asiya N. Sambo* and Justice J.
Mamza®
L4Department of Mathematics, School of Pure and Applied Sciences, Modibbo Adama University, Yola, Nigeria
235Department of Mathematics and Statistics, Federal Polytechnic N’yak, Shendam, Plateau State, Nigeria
{ojobosolomon4@gmail.com}, {justicejantiku@gmail.com}

Abstract

This study presents a computational intelligence-based framework for solving multi-term fractional differential equations
(MT-FDEs) common in engineering systems. The approach combines polynomial series expansion with a collocation
technique to convert complex fractional models into solvable algebraic systems. Using Caputo-type derivatives, the method
effectively captures memory and hereditary effects in materials and systems. Two engineering applications a viscoelastic
bridge deck and a fractional Windkessel blood flow model demonstrate the accuracy and stability of the approach. The
numerical results show excellent agreement with exact analytical solutions, producing negligible errors. The findings confirm
the method’s efficiency and reliability in modeling real-world systems that exhibit fractional-order behavior, with potential
for wider application in nonlinear and multidimensional engineering problems.
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1. INTRODUCTION

The adoption of fractional-order calculus has become a cornerstone in the mathematical modeling of
complex systems across engineering and applied sciences, from viscoelastic material behavior and
anomalous diffusion in chemical processes to the dynamics of control systems. These multi-term
fractional differential equations (MT-FDESs) provide a superior framework for capturing memory and
hereditary properties that integer-order models often miss. However, their non-local structure presents
significant computational challenges, demanding sophisticated numerical intelligence for their solution.

While a diverse arsenal of numerical technigues has been developed including Perturbed Collocation
(Uwaheren et al., 2020), Adomian Decomposition (Wazwaz et al, 2001), and spectral methods like
Galerkin Approximations with Chebyshev Polynomials (Issa & Saleh, 2017) the quest for more efficient
and intelligent computational schemes is ongoing. The inherent complexity of MT-FDEs, characterized
by multiple fractional orders, often leads to computationally expensive algorithms that are prohibitive for
large-scale engineering applications. This gap highlights a critical need for smart computational
frameworks that enhance numerical accuracy while optimizing algorithmic performance.

Recent advances, such as collocation-based approach to reformulate Fredholm—\Volterra fractional
integro-differential equations into equivalent integral forms, which were subsequently solved as algebraic
systems through numerical techniques. This work underscores the variety of existing strategies for
addressing fractional-order problems and reflects the growing need for numerically efficient and highly
accurate computational frameworks (James et al. 2025), operational matrices derived from orthogonal
polynomials and reformulations into integral equations (Bolandtalat et al. 2016), have pushed the
boundaries of what is possible. Yet, the evolving demands of modern engineering simulation require a
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step further: the integration of computational intelligence principles into the numerical fabric of these
solvers.

In this work, we respond to this need by introducing a computationally intelligent framework for
solving high-order multi-term fractional differential equations. We present an enhanced collocation
method that leverages smart algorithmic design to improve numerical accuracy and computational
efficiency significantly. Our approach is specifically tailored to handle the challenges of complex
fractional-order systems, providing a robust and intelligent tool for engineering analysis. The proposed
model is formulated as:

N

Du(®) = ) (D u(®) + g0 "
k=0

Subject to the prescribed initial conditions:

u® ) =, k=0,1,.... m—1meENN-1<y< Ny <y (2)

Here, u(t) denotes the unknown function to be determined, assumed to be continuous within the
domain of interest, D*c and DY represent the Caputo fractional derivatives of orders p, and y
respectively, a, (t) is a known continuous coefficient function that may vary with t, g(t) represents the
known source or forcing function in the system, also assumed to be continuous, t; and y, are constants
specifying particular points and their corresponding initial conditions for the solution, and ,m € N
denotes a positive integer that specifies the number of initial conditions.

2. Methodology and Techniques

This part provides the foundational elements of fractional calculus necessary for constructing and
analyzing the computational intelligence framework presented herein.
Definition 2.1: Fractional Derivative in the Sense of Caputo
The Caputo fractional derivative of order y > 0 for a function u(t) defined on the interval t € [c, d],
IS given by:

y :; ‘ _ rym-y-1, (m)
DYu(E) = fm—s [ @-prrrumga

(3)

wherem —1<y<m,meN,andt >c (Podlubny et al, 1999)
Definition 2.2: Analytical Representation via Series Expansion
For a given sequence of real coefficients (), where r > 0, the power series expansion in the variable
t is expressed as:

< @
u(t) = Y G (t — to) = DO
r=0
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where ®(t) = [1, (t — to), (t — t0)?, ..., (t — )V 1,0 = [T, U1, &g, oo, Oy 1T, u(t) is assumed to
be analytic within the interval of interest, and the series converges absolutely for all t satisfying
|t — to| < R with R denoting the radius of convergence of the series.
Consequently, the coefficients of the series can be expressed in a compact vector form as
w"t)=U,0, r=0,1,2,..,N,re zZ*
Where ()" (t) represents the rt" term in the polynomial series expansion, ® denotes the vector
of unknown coefficients, and t is the independent variable.
Definition 2.3: Fundamental Collocation Framework
The Fundamental Collocation Framework (FCF) is employed to establish the collocation nodes
within the interval [c, d], defined as
g=c+g%%yyj=12“wN ©)
(Atkinson et al, 2008)
Definition 2.4: Fractional Integral Operator
For a continuous function u(t), the fractional integral of order vy is defined as:

y S 1) ©®
1}(Dvu(e)) = u(t) — Z = (t—co), p—1<y<p
r=0
(Miller and Ross, 1993)
Definition 2.5: Fractional Integration of a Continuous Function
1 (7)

1Y (9(0) = f (t = DY g(0)dr

r(y)
(Kilbas et al, 2006)
Definition 2.5: Riemann-Liouville Fractional Differentiation
The Riemann—Liouville fractional operator of order y > 0, where n — 1 <y < n, applied to a
power function u(t) = t4, is defined as:
prei= F@+D o, (®)
rig—v+1)
(Samko et al., 1993)
3. Computed Results and Discussion
This section introduces the collocation-based numerical framework employed for solving
fractional differential models. The method adopts a polynomial-driven power series formulation as its
fundamental structure to generate accurate solution approximations.
Lemma 3.1: Integral-Based Expression
Let the function u(t) satisfy equation (1) subject to the condition in (2). The problem can then be
reformulated in its equivalent integral form as:
['DYu(t) = u(t) — ¥(t) )

where the initial-condition polynomial is given by:
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u®
o=y O gy (10)

r=0

Applying 1} to both sides of (1) yields:

Al (11)
IY(u@) =1/ (z ay () DFru(t) + g(t))

k=0

Using the identity 1Y DYu(t) = u(t) — ¥(t), this becomes:
N

w(®) = W) = ) [ (@®OD"u(®) + [ (g(®)

k=0

Or we prefer the right-hand integrals written out explicitly (with lower limit c),

(12)
u(t) = W(t) = Z e f (¢ = 9" aeODL U@ + = (6= D g(6)ag
Abbas and Mehdi (2010) and Atkinson (2008)
Writing the integrals explicitly, we obtain the Volterra equation:
(13)

N 1 ¢
u(O) = PO + ) o | =D @D U@ + s (- D g6
k=0

()

Substitute the truncated power series, We need D#*ku(§). Using term-wise fractional differentiation of
power functions,

r(r+1) (14)

DER(t — t)T =——~ (§—t,)"™, r=0,1,2,..,N

Hence;

DEU(E) = 1, ()0 (15)

where the row vector V,, (§) has components;

rr+1 (16)

(Vuk(f))r = ﬁ(f —ty)" HE, r=2012,..,N
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3.1 Volterra equation in matrix—vector form
Substitute into the Volterra equation to get:

N 1 t (17)
— - _ -1
200 =0+ ) 7 | @-orta@y, e
1 ¢ o
ol ARG
We define the kernel matrix—vector contributions and forcing term
t
K (t):= %y),[; (t =&)Y 1, (®)V,, (£)dE0 (arow vector) (18)
t
PO = s [ =07 g0t Cscalar) )
Then;
a (20)
B0 — (Z Kk(t)> 0 =W(t) + F(t)
k=0
Or equivalently
(21)

[®() — K(D]0 = W) + F(©), K©) = ) Ki(®)
k=0

3.2 Collocation discretization (linear algebraic system)
Choose collocation nodes ¢;,j = 1,2, ..., N.. Evaluate the matrix equation at each node to obtain

a linear system for ©: forj = 1,2, ..., N,

[(t) —K(tple =¥ (t) + F(t;) (22)
Stacking the N, equations yields
A =b (23)
where
[ D(t) — K(t1) 7 [ W(t) + F(ty) T
?(t,) — K(ts) ¥(t,) + F(t2)
A= ' , b= ' (24)

0(t,) — K (ta)] (tn,) + Fta,)

Nex(N+1)

American University of Nigeria, 3 International Conference Proceeding, October 29- November 1, 2025, e-ISSN: 3027-0650



e-1SSN: 3027-0650
Vol. 3, Issue 1, 667-679., October 30-Novermber 1, 2025

Solve A® = b by LU decomposition to obtain . The approximate solution is then
fi(t) = ¢(t)0 (25)

3.3 Analysis of Convergence

Let u(t) denote the exact solution of the Volterra-type fractional integral equation from equation
(13) and let uy (t) = @(t)O) represent the collocation-based approximate solution constructed from a
polynomial power-series expansion.
Assuming that a,(t), g(t) € C([c,d]) and that u(t) possesses sufficient smoothness on [c,d], the
proposed scheme is consistent and stable, ensuring convergence as N — oo. Specifically,

”u - uN”oo,[c,d] < C(Etrunc(N) + squad) (26)

where eync(N) and e4,,44 denote the truncation and quadrature errors, respectively, and € is a bounded
constant dependent on the conditioning of the collocation matrix.

Hence, the adopted collocation-oriented polynomial framework guarantees reliable convergence,
with the rate governed by the smoothness of the underlying fractional solution and the accuracy of the
numerical integration employed.

3.4 Error Estimate
The error associated with the numerical approximation is defined as:

Ex(t) = u(t) —un(t) (27)

which represents the deviation of the computed (numerical) solution from the exact analytical one.
Consequently, the overall bound on the approximation error satisfies
”EN”oo,[c,d] = ”u — Uy ”oo,[c,d] < C(Strunc (N) + gquad) (28)

(Podlubny et al, 1999)

Example 1
(Civil-engineering example) Physical scenario:

A bridge deck (or building floor) is idealized as a lumped single-degree-of-freedom (SDOF) system with
a representative mass g, supported by viscoelastic dampers that provide both stiffness and fractional-
order damping. The system is subjected to external dynamic loading g (t), such as moving vehicles, wind
gusts, or seismic ground excitation.

(James et al, 2025)

Solution 1
The vertical displacement of the deck, denoted by u(t), is governed by the following Caputo-type multi-
term fractional differential equation:

DY u(t) = =t~ D% u(t) — t%5u(t) + g(t) (29)

where: D->u(t) represents the fractional acceleration of order 1.5, capturing the combined inertial and
elastic effects of the deck, —t~1D%>u(t) models the hereditary damping introduced by the viscoelastic
dampers, which exhibit memory-dependent energy dissipation, t%>u(t) denotes the stiffness-related
restoring force, scaled by a fractional power of time to represent time-dependent viscoelastic behavior or
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material degradation and g(t) signifies the external forcing term, which may arise from traffic-induced
vibrations, wind loads, or earthquake base motion.

The system satisfies the initial conditions:
u(0) =0, u'(0) =0 (30)

implying that the structure is initially at rest prior to excitation.
For this example, the exact analytical solution is taken as:
u(t) =t3 —t? (31)

which corresponds physically to a smooth transient displacement profile that rises and decays,
representing a single vibration mode response. The associated forcing function g(t) is derived to ensure
that this expression satisfies the governing fractional differential equation:
r(3.5) +I(25) t? r(2.5)+r(.5) t? 32
o0 = |6 (FEBAT@S) ) (T25) +TAS) 2] o (32)
['(2.5r(2.5) 6 I'(1.5)r(2.5) 2

by employing the collocation technique with y = 1.5, u; = 0.5, and polynomial degree N = 4 the
governing Caputo-type fractional differential equation is expressed in its corresponding Volterra integral
form as:

1 1 t t -1 (33)
= - _ 0.5 _ -0.5
u) = e+ ZO r(1.5)r(o.5)f0 (=9 UO = Gy Dr(n + 05) dTl a5
]=
by substituting (4) into (33) we obtain the matrix representation of the collocation system:
L t (34)
®P(t)A = ¥(t) Z L j t
B - I'(1.5)r(0.5) J, (
]:
. t ; Tn—l
_ 0. _ -0. A
$) UO =) T Dran T 05) dTl @
where
N @ t (39)
— u (C) r 1 f 0.5
W) = ZO O Sl ARG
hence, the resulting integral equation can be represented as:
D(t)A = P(t) (36)
We use the 4-point Gauss—Legendre collocation at (X1, X0, %3,%4 ) =
(0.0694318442,0.3300094782,0.6699905218,0.9305681558) ~ (ﬁg%i—i )after applying the

initial constraints.
By applying matrix inversion techniques in Maple 18 software, the unknown parameters are determined,
yielding the following numerical approximation:

uy(t) = —1.00000000000000¢2 + 1.00000000000000¢3
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Errory=|uy(t) —u(t)| = |(—=1.00000000000000t% + 1.00000000000000t3) — (3 — t2)]
Table 1: Comparison of the exact solution, computed numerical approximation, and corresponding
absolute error for Example 1.

t Exact Solution u(t) New computed value u,(t) Error (New) Error(g
0.0 0.000000000000000 0.000000000000000 0.0000000e — 15 5.3690e — 13
0.2 —3.200000000000000e — 2 —3.200000000000001e — 2 1.0000000e — 15 4.1000e — 11
0.4 —9.600000000000000e —2  —9.600000000000001¢ — 2 1.0000000e — 15 9.0000e — 11
0.6 —1.440000000000001e —1  —1.440000000000001e — 1 0.0000000e — 15 0.0000000e — 15
0.8 —1.280000000000000e — 1 —1.280000000000001e — 1 1.0000000e — 15 2.1000e — 15
1.0 0.000000000000000 0.000000000000000 0.0000000e — 15 2.1999e — 15

The numerical results demonstrate that the collocation-based fractional computational framework
provides an approximation to the exact analytical solution u(t) of the viscoelastic vibration model
representing a bridge deck under dynamic loading. The computed results agree perfectly with the exact
solution across the interval t € [0, 1], producing negligible errors on the order of 0.0000000. This high
level of accuracy confirms the stability and convergence of the method when applied to fractional-order
vibration systems governed by Caputo derivatives. The results further validate that the selected
collocation points efficiently capture the hereditary damping and time-dependent stiffness effects
inherent in viscoelastic dampers. Therefore, the method proves reliable and robust for analyzing and
controlling vibration responses in civil engineering structures, such as bridges and tall buildings, where
fractional-order modeling provides a more realistic representation of material and damping behavior.

Example 2

(Bioengineering example) Physical scenario:

The Windkessel model in Caputo fractional derivative form is a simple way to describe how blood flows
through the large arteries. It treats the arteries like a balloon (which can stretch) connected to a small
opening (which resists the flow). In real life, arteries are not perfectly elastic they are viscoelastic,
meaning they can stretch and slowly return to shape, like a rubber band with a bit of stickiness. This
stickiness makes them remember how they were stretched before.To describe this “memory effect,”
scientists use a fractional-order model instead of the ordinary derivative. The fractional model gives
a more accurate picture of how blood pressure and flow change over time inside the arteries.

(James et al, 2025)

Solution 2
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The change in blood pressure or flow along an artery, represented by u(t), is described by the following
Caputo-type fractional differential equation:
DYSu(t) + t71D%5u(t) — t%u(t) = g(t) (37)

where: D*5u(t) represents the fractional acceleration term, showing how blood flow and arterial wall
motion change together over time, t~1D%%u(t) models the viscoelastic (memory) effect of arteries that
is, how the present flow depends partly on its past states, —t%>u(t) describes the elastic restoring force,
which works to return the artery to its normal state after being stretched, g(t) represents the external or
driving input, such as the pulsating action of the heart that pushes blood through the arteries.

The initial conditions are given as:
u(0) =0, u'(0)=0 (38)

meaning that at the starting point, the artery is at rest with no pressure or flow buildup.
For this example, the exact analytical solution is chosen as:
u(t) = —t3 + t? (39)

which describes a pulse-like motion the pressure or flow increases smoothly and then drops, similar to
one heartbeat cycle.

The corresponding forcing function g(t) that ensures this solution satisfies equation (40) is given by:

[, (T@5)+T(5)  t? r'(3.5)+I(5) t?\] 1 (40)
g(t)_lz( T(1.5)F(25) +?>_6t< (2.5)(2.5) +€>lt5

by using the collocation technique with fractional orders y = 1.5, y;, = 0.5, and a polynomial degree of
N = 4, the fractional differential equation can be written in its integral VVolterra form as:

1
1 t t _ -1 (41)
“0 =90+ ) rases ), ¢ 0" 0 rrarrom
Substituting the series form of u(t) into (41) gives the matrix equation:
(42)

n-1

1 1 t
®(t)A = ¥(t) —;m[) (t
T

-9 UO = o DI 05 4F |44

where
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(43)

N

) 1 t
v© =Y -0t [ - 00%0©

r=0

Since u(0) = 0, u'(0) = 0, the first part of W(t) becomes zero, leaving only the integral term involving
g(t). Thus, the final integral form becomes:

d(t)A = P(t) (44)
We use the 4-point Gauss—Legendre collocation at (X1, X9, %3,%4 ) =
(0.0694318442,0.3300094782, 0.6699905218, 0.9305681558) ~ (l—zggg )after applying the

initial constraints.
By applying matrix inversion techniques in Maple 18 software, the unknown parameters are determined,
yielding the following numerical approximation:
uy () = 1.00000000000000t% — 1.00000000000000¢3
Errory=|uy(t) — u(t)| = [(1.00000000000000t2 — 1.00000000000000t3) — (—t3 + t2)]
Table 2: Comparison of the exact solution, computed numerical approximation, and corresponding
absolute error for Example 2.

t Exact Solution u(t) New computed value u,(t) Error (New) Error(g
= -3+t
0.0 0.000000000000000 0.000000000000000 0.0000000e — 15 4.29943e — 13
0.2 —3.200000000000000e — 2 —3.200000000000001e — 2 1.0000000e — 15 3.0000e — 11
0.4 —9.600000000000000e — 2 —9.600000000000001e — 2 1.0000000e — 15 1.0000e — 11
0.6 —1.440000000000001e —1  —1.440000000000001e — 1 0.0000000e — 15 1.0000e — 10
0.8 —1.280000000000000e — 1 —1.280000000000001e — 1 1.0000000e — 15 3.0000e — 10
1.0 0.000000000000000 0.000000000000000 0.0000000e — 15 3.6122e — 10

The fractional-order Windkessel in Caputo fractional derivative model gives a simple but more realistic
way to describe how blood flows through large arteries. The results in Table 2 show that the numerical
solution closely matches the exact one, with very small errors across all evaluated points. This
demonstrates that the adopted collocation-based fractional numerical method is both stable and highly
accurate in capturing the system’s real dynamics. Since real arteries are viscoelastic and have memory
(they slowly return to shape after being stretched), using the Caputo fractional derivative helps represent
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this effect accurately. This makes the model and the numerical scheme reliable tools for studying how
blood pressure and flow change with time in the human body.

4. Conclusion

This study successfully developed and implemented an enhanced collocation-based computational
framework for solving multi-term fractional differential equations (MT-FDES) arising in engineering
systems. The proposed approach utilizes polynomial series expansion and a structured collocation
technique to transform complex fractional-order problems into solvable algebraic systems. By employing
Caputo-type fractional derivatives and fractional integral operators, the framework effectively captures
the memory and hereditary properties that are fundamental to real-world engineering phenomena such as
viscoelastic vibration, structural damping, and blood flow in arteries. The effectiveness of the method
was demonstrated through two representative engineering problems a viscoelastic bridge deck model and
a fractional-order Windkessel model in Caputo-type fractional derivative form where the numerical
results closely matched the exact analytical solutions, yielding negligible errors across all evaluated
points. This excellent agreement confirms the accuracy, stability, and efficiency of the proposed
numerical method in handling fractional systems with multiple derivative terms. The study therefore
establishes the collocation-based fractional framework as a powerful and reliable computational tool for
analyzing engineering systems that exhibit memory-dependent behavior. Furthermore, the approach
demonstrates significant potential for broader applications in science and engineering, offering a balance
between mathematical rigor and computational simplicity. Future work may focus on extending this
framework to nonlinear, variable-order, and multidimensional fractional systems to enhance its capability
in modeling and simulating more complex engineering processes
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