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Abstract  
This study presents a computational intelligence-based framework for solving multi-term fractional differential equations 

(MT-FDEs) common in engineering systems. The approach combines polynomial series expansion with a collocation 

technique to convert complex fractional models into solvable algebraic systems. Using Caputo-type derivatives, the method 

effectively captures memory and hereditary effects in materials and systems. Two engineering applications a viscoelastic 

bridge deck and a fractional Windkessel blood flow model demonstrate the accuracy and stability of the approach. The 

numerical results show excellent agreement with exact analytical solutions, producing negligible errors. The findings confirm 

the method’s efficiency and reliability in modeling real-world systems that exhibit fractional-order behavior, with potential 

for wider application in nonlinear and multidimensional engineering problems. 
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1. INTRODUCTION 

The adoption of fractional-order calculus has become a cornerstone in the mathematical modeling of 

complex systems across engineering and applied sciences, from viscoelastic material behavior and 

anomalous diffusion in chemical processes to the dynamics of control systems. These multi-term 

fractional differential equations (MT-FDEs) provide a superior framework for capturing memory and 

hereditary properties that integer-order models often miss. However, their non-local structure presents 

significant computational challenges, demanding sophisticated numerical intelligence for their solution. 

While a diverse arsenal of numerical techniques has been developed including Perturbed Collocation 

(Uwaheren et al., 2020), Adomian Decomposition (Wazwaz et al, 2001), and spectral methods like 

Galerkin Approximations with Chebyshev Polynomials (Issa & Saleh, 2017) the quest for more efficient 

and intelligent computational schemes is ongoing. The inherent complexity of MT-FDEs, characterized 

by multiple fractional orders, often leads to computationally expensive algorithms that are prohibitive for 

large-scale engineering applications. This gap highlights a critical need for smart computational 

frameworks that enhance numerical accuracy while optimizing algorithmic performance. 

Recent advances, such as collocation-based approach to reformulate Fredholm–Volterra fractional 

integro-differential equations into equivalent integral forms, which were subsequently solved as algebraic 

systems through numerical techniques. This work underscores the variety of existing strategies for 

addressing fractional-order problems and reflects the growing need for numerically efficient and highly 

accurate computational frameworks (James et al. 2025), operational matrices derived from orthogonal 

polynomials and reformulations into integral equations (Bolandtalat et al. 2016), have pushed the 

boundaries of what is possible. Yet, the evolving demands of modern engineering simulation require a 
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step further: the integration of computational intelligence principles into the numerical fabric of these 

solvers. 

In this work, we respond to this need by introducing a computationally intelligent framework for 

solving high-order multi-term fractional differential equations. We present an enhanced collocation 

method that leverages smart algorithmic design to improve numerical accuracy and computational 

efficiency significantly. Our approach is specifically tailored to handle the challenges of complex 

fractional-order systems, providing a robust and intelligent tool for engineering analysis. The proposed 

model is formulated as:  

𝐷𝛾𝑢(𝑡) = ∑ 𝑎𝑘(𝑡)𝐷
𝜇𝑘𝑢(𝑡)

𝑁

𝑘=0

+ 𝑔(𝑡) 

 

(1) 

 

Subject to the prescribed initial conditions: 

𝑢(𝑘)(𝑡𝑘) = 𝜇𝑘, 𝑘 = 0, 1, … ,𝑚 − 1,𝑚 ∈ ℕ,N − 1 < γ < N, 𝜇𝑘 < 𝛾 

 

(2) 

Here, 𝑢(𝑡) denotes the unknown function to be determined, assumed to be continuous within the 

domain of interest, 𝐷𝜇𝑘  and 𝐷𝛾 represent the Caputo fractional derivatives of orders 𝜇𝑘 and 𝛾 

respectively, 𝑎𝑘(𝑡) is a known continuous coefficient function that may vary with 𝑡, 𝑔(𝑡) represents the 

known source or forcing function in the system, also assumed to be continuous, 𝑡𝑘 and 𝜇𝑘 are constants 

specifying particular points and their corresponding initial conditions for the solution, and , 𝑚 ∈ ℕ 

denotes a positive integer that specifies the number of initial conditions. 

2. Methodology and Techniques 

This part provides the foundational elements of fractional calculus necessary for constructing and 

analyzing the computational intelligence framework presented herein.  

Definition 2.1: Fractional Derivative in the Sense of Caputo 

The Caputo fractional derivative of order γ > 0 for a function 𝑢(𝑡) defined on the interval 𝑡 ∈ [c, d], 

is given by: 

𝐷𝛾𝑢(𝑡) =
1

Γ(𝑚 − 𝛾)
∫ (𝑡 − ξ)𝑚−𝛾−1𝑢(𝑚)(ξ)𝑑ξ

𝑡

𝑐

 

 

(3) 

where 𝑚 − 1 < 𝛾 ≤ 𝑚,𝑚 ∈ ℕ, and 𝑡 > 𝑐     (Podlubny et al, 1999) 

Definition 2.2: Analytical Representation via Series Expansion 

For a given sequence of real coefficients (ζ𝑟), where 𝑟 ≥ 0, the power series expansion in the variable 

𝑡 is expressed as:  

𝑢(𝑡) = ∑ζ𝑟(𝑡 − 𝑡0)
𝑟

∞

𝑟=0

= Φ(t)Θ 

 

(4) 
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where Φ(t) = [1, (𝑡 − 𝑡0), (𝑡 − 𝑡0)
2, … , (𝑡 − 𝑡0)

𝑁 ], Θ = [ζ0, ζ1, ζ2, … , ζ𝑁  ]𝑇,  𝑢(𝑡) is assumed to 

be analytic within the interval of interest, and the series converges absolutely for all 𝑡 satisfying 

|𝑡 − 𝑡0| < 𝑅 with 𝑅 denoting the radius of convergence of the series.  

Consequently, the coefficients of the series can be expressed in a compact vector form as 

(𝑢)𝑟(𝑡) = 𝑈𝑟 Θ,    r = 0, 1, 2, … , N, r ∈  ℤ+ 

Where (𝑢)𝑟(𝑡) represents the 𝑟𝑡ℎ term in the polynomial series expansion, Θ denotes the vector 

of unknown coefficients, and 𝑡 is the independent variable. 

Definition 2.3: Fundamental Collocation Framework 

The Fundamental Collocation Framework (FCF) is employed to establish the collocation nodes 

within the interval [c, d], defined as 

𝑡𝑗 = 𝑐 +
(𝑑 + 𝑐)𝑗

𝑁
,   𝑗 = 1, 2, … ,𝑁 

 

 (5) 

 (Atkinson et al, 2008) 

Definition 2.4: Fractional Integral Operator 

For a continuous function 𝑢(𝑡), the fractional integral of order γ is defined as:  

𝐼𝑐
γ
(𝐷γ𝑢(𝑡)) = 𝑢(𝑡) − ∑

𝑢(𝑟)(𝑐)

𝑟!
(𝑡 − 𝑐)𝑟 ,   𝑝 − 1 <

𝑁

𝑟=0

 γ ≤ 𝑝 

 

(6) 

(Miller and Ross, 1993) 

Definition 2.5: Fractional Integration of a Continuous Function 

𝐼𝑐
γ
(𝑔(𝑡)) =

1

𝛤( γ)
∫ (𝑡 − τ)γ−1𝑔(τ)𝑑τ

𝑡

𝑐

 

(Kilbas et al, 2006)  

Definition 2.5: Riemann–Liouville Fractional Differentiation 

(7) 

The Riemann–Liouville fractional operator of order γ > 0, where 𝑛 − 1 < γ < 𝑛, applied to a 

power function 𝑢(𝑡) = 𝑡𝑞 , is defined as:  

𝐷𝑡
γ
𝑡q =

𝛤(𝑞 + 1)

𝛤(𝑞 − γ + 1)
𝑡𝑞−γ 

(8) 

  

(Samko et al., 1993) 

3. Computed Results and Discussion 

This section introduces the collocation-based numerical framework employed for solving 

fractional differential models. The method adopts a polynomial-driven power series formulation as its 

fundamental structure to generate accurate solution approximations. 

Lemma 3.1: Integral-Based Expression 

Let the function 𝑢(𝑡) satisfy equation (1) subject to the condition in (2). The problem can then be 

reformulated in its equivalent integral form as: 

𝐼𝑡
γ
𝐷𝑡

γ
𝑢(𝑡) = 𝑢(𝑡) − Ψ(𝑡) (9) 

where the initial-condition polynomial is given by: 
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Ψ(𝑡) = ∑
𝑢(𝑟)(𝑐)

𝑟!
(𝑡 − 𝑐)𝑟

𝑚−1

𝑟=0

 

 

  

(10) 

Applying 𝐼𝑡
γ
 to both sides of (1) yields: 

𝐼𝑡
γ
(𝐷𝑡

γ
𝑢(𝑡)) = 𝐼𝑡

γ
(∑ 𝑎𝑘(𝑡)𝐷

𝜇𝑘𝑢(𝑡)

𝑁

𝑘=0

+ 𝑔(𝑡)) 

 

(11) 

Using the identity 𝐼𝑡
γ
𝐷𝑡

γ
𝑢(𝑡) = 𝑢(𝑡) − Ψ(𝑡),  this becomes: 

𝑢(𝑡) − Ψ(𝑡) = ∑ 𝐼𝑡
γ
(𝑎𝑘(𝑡)𝐷

𝜇𝑘𝑢(𝑡)) + 𝐼𝑡
γ
(𝑔(𝑡))

𝑁

𝑘=0

 

Or we prefer the right-hand integrals written out explicitly (with lower limit 𝑐), 

𝑢(𝑡) − Ψ(𝑡) = ∑
1

𝛤(γ)
∫ (𝑡 − ξ)γ−1𝑎𝑘(ξ)𝐷ξ

𝜇𝑘𝑢(ξ)dξ +
1

𝛤(γ)

𝑡

𝑐

𝑁

𝑘=0

(𝑡 − ξ)γ−1𝑔(𝜉)𝑑𝜉 

   (12) 

Abbas and Mehdi (2010) and Atkinson (2008) 

Writing the integrals explicitly, we obtain the Volterra equation: 

𝑢(𝑡) = Ψ(𝑡) + ∑
1

𝛤(γ)
∫ (𝑡 − ξ)γ−1𝑎𝑘(ξ)𝐷ξ

𝜇𝑘𝑢(ξ)dξ +
1

𝛤(γ)

𝑡

𝑐

𝑁

𝑘=0

(𝑡 − ξ)γ−1𝑔(𝜉)𝑑𝜉 

(13) 

 

Substitute the truncated power series, We need 𝐷𝜇𝑘𝑢(𝜉). Using term-wise fractional differentiation of 

power functions,  

𝐷ξ
𝜇𝑘(𝑡 − 𝑡0)

𝑟|
𝑡=𝜉

=
𝛤(𝑟 + 1)

𝛤(𝑟 − 𝜇𝑘 + 1)
(𝜉 − 𝑡0)

𝑟−𝜇𝑘 ,   𝑟 = 0, 1, 2, … ,𝑁 

 

(14) 

Hence; 

𝐷ξ
𝜇𝑘𝑢(𝜉) = 𝑉𝜇𝑘

(𝜉)Θ (15) 

where the row vector 𝑉𝜇𝑘
(𝜉) has components; 

(𝑉𝜇𝑘
(𝜉))𝑟 =

𝛤(𝑟 + 1)

𝛤(𝑟 − 𝜇𝑘 + 1)
(𝜉 − 𝑡0)

𝑟−𝜇𝑘 , 𝑟 = 0, 1, 2, … ,𝑁 
(16) 
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3.1 Volterra equation in matrix–vector form 

Substitute into the Volterra equation to get: 

Φ(t)Θ = Ψ(𝑡) + ∑
1

𝛤(γ)
∫ (𝑡 − ξ)γ−1𝑎𝑘(ξ)𝑉𝜇𝑘

(𝜉)dξΘ
𝑡

𝑐

𝑁

𝑘=0

+
1

𝛤(γ)
∫ (𝑡 − ξ)γ−1

𝑡

𝑐

𝑔(𝜉)𝑑𝜉 

     (17) 

We define the kernel matrix–vector contributions and forcing term 

𝐾𝑘(𝑡): =
1

𝛤(γ)
∫ (𝑡 − ξ)γ−1𝑎𝑘(ξ)𝑉𝜇𝑘

(𝜉)dξΘ
𝑡

𝑐

   (𝑎 𝑟𝑜𝑤 𝑣𝑒𝑐𝑡𝑜𝑟) 

 

(18) 

 

𝐹(𝑡) ≔
1

𝛤(γ)
∫ (𝑡 − ξ)γ−1

𝑡

𝑐

𝑔(𝜉)𝑑𝜉        (𝑠𝑐𝑎𝑙𝑎𝑟) 

 

(19) 

Then; 

Φ(t)Θ − (∑ 𝐾𝑘(𝑡)

𝑁

𝑘=0

)Θ = Ψ(𝑡) + 𝐹(𝑡) 

 

           (20) 

Or equivalently  

[Φ(t) − 𝐾(𝑡)]Θ = Ψ(𝑡) + 𝐹(𝑡),     𝐾(𝑡) ≔ ∑ 𝐾𝑘(𝑡)

𝑁

𝑘=0

 

 

(21) 

3.2 Collocation discretization (linear algebraic system)  

Choose collocation nodes 𝑡𝑗 , 𝑗 = 1, 2, … ,𝑁𝑐. Evaluate the matrix equation at each node to obtain 

a linear system for Θ: for 𝑗 = 1, 2, … ,𝑁𝑐  

[𝛷(𝑡𝑗) − 𝐾(𝑡𝑗)]𝛩 = 𝛹(𝑡𝑗) + 𝐹(𝑡𝑗) 

 

(22) 

Stacking the 𝑁𝑐 equations yields 

𝐴𝛩 = 𝑏 

 

(23) 

where  

𝐴 =

[
 
 
 
 
 

𝛷(𝑡1) − 𝐾(𝑡1)

𝛷(𝑡2) − 𝐾(𝑡2)
.
.
.

𝛷(𝑡𝑁𝑐
) − 𝐾(𝑡𝑁𝑐

)]
 
 
 
 
 

𝑁𝑐×(𝑁+1)

 ,    𝑏 =

[
 
 
 
 
 

𝛹(𝑡1) + 𝐹(𝑡1)

𝛹(𝑡2) + 𝐹(𝑡2)
.
.
.

𝛹(𝑡𝑁𝑐
) + 𝐹(𝑡𝑁𝑐

)]
 
 
 
 
 

 

 

 

(24) 
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Solve 𝐴𝛩 = 𝑏  by LU decomposition to obtain 𝛩. The approximate solution is then 

𝑢̂(𝑡) = 𝛷(𝑡)𝛩̂ 

 

(25) 

 

3.3 Analysis of Convergence 

Let 𝑢(𝑡) denote the exact solution of the Volterra-type fractional integral equation from equation 

(13) and let 𝑢𝑁(𝑡) = 𝛷(𝑡)𝛩𝑁 represent the collocation-based approximate solution constructed from a 

polynomial power-series expansion. 

Assuming that 𝑎𝑘(𝑡), 𝑔(𝑡) ∈ 𝐶([c, d]) and that 𝑢(𝑡) possesses sufficient smoothness on [c, d], the 

proposed scheme is consistent and stable, ensuring convergence as 𝑁 → ∞. Specifically, 

‖𝑢 − 𝑢𝑁‖∞,[c,d] ≤ 𝐶(𝜀𝑡𝑟𝑢𝑛𝑐(𝑁) + 𝜀𝑞𝑢𝑎𝑑) 

 

(26) 

where 𝜀𝑡𝑟𝑢𝑛𝑐(𝑁) 𝑎𝑛𝑑 𝜀𝑞𝑢𝑎𝑑 denote the truncation and quadrature errors, respectively, and 𝐶 is a bounded 

constant dependent on the conditioning of the collocation matrix. 

Hence, the adopted collocation-oriented polynomial framework guarantees reliable convergence, 

with the rate governed by the smoothness of the underlying fractional solution and the accuracy of the 

numerical integration employed. 

3.4 Error Estimate 

The error associated with the numerical approximation is defined as: 

𝐸𝑁(𝑡) = 𝑢(𝑡) − 𝑢𝑁(𝑡) 

 

(27) 

which represents the deviation of the computed (numerical) solution from the exact analytical one. 

Consequently, the overall bound on the approximation error satisfies 

‖𝐸𝑁‖∞,[c,d] = ‖𝑢 − 𝑢𝑁‖∞,[c,d] ≤ 𝐶(𝜀𝑡𝑟𝑢𝑛𝑐(𝑁) + 𝜀𝑞𝑢𝑎𝑑) 

(Podlubny et al, 1999) 

(28) 

Example 1 

(Civil-engineering example) Physical scenario: 

 A bridge deck (or building floor) is idealized as a lumped single-degree-of-freedom (SDOF) system with 

a representative mass 𝑔, supported by viscoelastic dampers that provide both stiffness and fractional-

order damping. The system is subjected to external dynamic loading 𝑔(𝑡), such as moving vehicles, wind 

gusts, or seismic ground excitation.  

(James et al, 2025) 

Solution 1 

The vertical displacement of the deck, denoted by 𝑢(𝑡), is governed by the following Caputo-type multi-

term fractional differential equation: 

𝐷1.5𝑢(𝑡) = −𝑡−1𝐷0.5𝑢(𝑡) − 𝑡0.5𝑢(𝑡) + 𝑔(𝑡) 

 

(29) 

where: 𝐷1.5𝑢(𝑡) represents the fractional acceleration of order 1.5, capturing the combined inertial and 

elastic effects of the deck, −𝑡−1𝐷0.5𝑢(𝑡) models the hereditary damping introduced by the viscoelastic 

dampers, which exhibit memory-dependent energy dissipation, 𝑡0.5𝑢(𝑡) denotes the stiffness-related 

restoring force, scaled by a fractional power of time to represent time-dependent viscoelastic behavior or 
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material degradation and 𝑔(𝑡) signifies the external forcing term, which may arise from traffic-induced 

vibrations, wind loads, or earthquake base motion. 

 

The system satisfies the initial conditions: 

 𝑢(0) = 0,   𝑢′(0) = 0 

 

(30) 

implying that the structure is initially at rest prior to excitation. 

For this example, the exact analytical solution is taken as: 

𝑢(𝑡) = 𝑡3 − 𝑡2 

 

(31) 

which corresponds physically to a smooth transient displacement profile that rises and decays, 

representing a single vibration mode response. The associated forcing function 𝑔(𝑡) is derived to ensure 

that this expression satisfies the governing fractional differential equation: 

𝑔(𝑡) = [6𝑡 (
Γ(3.5) + Γ(2.5)

Γ(2.5)Γ(2.5)
+

𝑡2

6
) − 2(

Γ(2.5) + Γ(1.5)

Γ(1.5)Γ(2.5)
+

𝑡2

2
)] 𝑡0.5 

 

(32) 

by employing the collocation technique with 𝛾 = 1.5, 𝜇𝑘 = 0.5, and polynomial degree 𝑁 = 4 the 

governing Caputo-type fractional differential equation is expressed in its corresponding Volterra integral 

form as: 

𝑢(𝑡) = 𝛷(𝑡) + ∑
1

Γ(1.5)Γ(0.5)
∫ (𝑡 − 𝜉)0.5 [∫ (𝑡 − 𝜉)−0.5

𝜏𝑛−1

Γ(𝑛 + 1)Γ(𝑛 + 0.5)
𝑑𝜏

𝑡

0

] 𝑑𝜉
𝑡

0

1

𝑗=0

 

 

(33) 

by substituting (4) into (33) we obtain the matrix representation of the collocation system:  

𝛷(𝑡)𝐴 = Ψ(𝑡) − ∑
1

Γ(1.5)Γ(0.5)
∫ (𝑡

𝑡

0

1

𝑗=0

− 𝜉)0.5 [∫ (𝑡 − 𝜉)−0.5
𝜏𝑛−1

Γ(𝑛 + 1)Γ(𝑛 + 0.5)
𝑑𝜏

𝑡

0

] 𝑑𝜉 𝐴 

(34) 

where 

Ψ(𝑡) = ∑
𝑢(𝑟)(𝑐)

𝑟!
(𝑡 − 𝑐)𝑟 +

1

Γ(1.5)
∫ (𝑡 − 𝜉)0.5𝑔(𝜉)𝑑𝜉

𝑡

0

𝑁

𝑟=0

 

 

(35) 

hence, the resulting integral equation can be represented as: 

𝛷(𝑡)𝐴 =  Ψ(𝑡) 

 

(36) 

We use the 4-point Gauss–Legendre collocation at (𝑥1, 𝑥2, 𝑥3, 𝑥4 ) ≈

(0.0694318442, 0.3300094782, 0.6699905218, 0.9305681558) ≈ (
1

14
,
1

3
,
2

3
,
13

14
  ) after applying the 

initial constraints.  

By applying matrix inversion techniques in Maple 18 software, the unknown parameters are determined, 

yielding the following numerical approximation: 

𝑢𝑁(𝑡) = −1.00000000000000𝑡2 + 1.00000000000000𝑡3 
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𝐸𝑟𝑟𝑜𝑟𝑁=|𝑢𝑁(𝑡) − 𝑢(𝑡)| = |(−1.00000000000000𝑡2 + 1.00000000000000𝑡3) − (𝑡3 − 𝑡2)| 

Table 1: Comparison of the exact solution, computed numerical approximation, and corresponding 

absolute error for Example 1. 

𝒕 𝑬𝒙𝒂𝒄𝒕 𝑺𝒐𝒍𝒖𝒕𝒊𝒐𝒏 𝒖(𝒕)

= 𝒕𝟑 − 𝒕𝟐 

𝑵𝒆𝒘 𝒄𝒐𝒎𝒑𝒖𝒕𝒆𝒅 𝒗𝒂𝒍𝒖𝒆 𝒖𝟒(𝒕) 𝑬𝒓𝒓𝒐𝒓 (𝑵𝒆𝒘) 𝑬𝒓𝒓𝒐𝒓[𝟏𝟎] 

𝟎. 𝟎 0.000000000000000 0.000000000000000 0.0000000𝑒 − 15 5.3690𝑒 − 13 

𝟎. 𝟐 −3.200000000000000𝑒 − 2 −3.200000000000001𝑒 − 2 1.0000000𝑒 − 15 4.1000𝑒 − 11 

𝟎. 𝟒 −9.600000000000000𝑒 − 2 −9.600000000000001𝑒 − 2 1.0000000𝑒 − 15 9.0000𝑒 − 11 

𝟎. 𝟔 −1.440000000000001𝑒 − 1 −1.440000000000001𝑒 − 1 0.0000000𝑒 − 15 0.0000000𝑒 − 15 

𝟎. 𝟖 −1.280000000000000𝑒 − 1 −1.280000000000001𝑒 − 1 1.0000000𝑒 − 15 2.1000𝑒 − 15 

𝟏. 𝟎 0.000000000000000 0.000000000000000 0.0000000𝑒 − 15 2.1999𝑒 − 15 

The numerical results demonstrate that the collocation-based fractional computational framework 

provides an approximation to the exact analytical solution 𝑢(𝑡) of the viscoelastic vibration model 

representing a bridge deck under dynamic loading. The computed results agree perfectly with the exact 

solution across the interval 𝑡 ∈ [0, 1], producing negligible errors on the order of 0.0000000. This high 

level of accuracy confirms the stability and convergence of the method when applied to fractional-order 

vibration systems governed by Caputo derivatives. The results further validate that the selected 

collocation points efficiently capture the hereditary damping and time-dependent stiffness effects 

inherent in viscoelastic dampers. Therefore, the method proves reliable and robust for analyzing and 

controlling vibration responses in civil engineering structures, such as bridges and tall buildings, where 

fractional-order modeling provides a more realistic representation of material and damping behavior. 

Example 2 

(Bioengineering example) Physical scenario:  

The Windkessel model in Caputo fractional derivative form is a simple way to describe how blood flows 

through the large arteries. It treats the arteries like a balloon (which can stretch) connected to a small 

opening (which resists the flow). In real life, arteries are not perfectly elastic they are viscoelastic, 

meaning they can stretch and slowly return to shape, like a rubber band with a bit of stickiness. This 

stickiness makes them remember how they were stretched before.To describe this “memory effect,” 

scientists use a fractional-order model instead of the ordinary derivative. The fractional model gives 

a more accurate picture of how blood pressure and flow change over time inside the arteries. 

(James et al, 2025) 

Solution 2 
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The change in blood pressure or flow along an artery, represented by 𝑢(𝑡), is described by the following 

Caputo-type fractional differential equation: 

𝐷1.5𝑢(𝑡) + 𝑡−1𝐷0.5𝑢(𝑡) − 𝑡0.5𝑢(𝑡) = 𝑔(𝑡) 

 

(37) 

where: 𝐷1.5𝑢(𝑡) represents the fractional acceleration term, showing how blood flow and arterial wall 

motion change together over time,  𝑡−1𝐷0.5𝑢(𝑡) models the viscoelastic (memory) effect of arteries that 

is, how the present flow depends partly on its past states, −𝑡0.5𝑢(𝑡) describes the elastic restoring force, 

which works to return the artery to its normal state after being stretched, 𝑔(𝑡) represents the external or 

driving input, such as the pulsating action of the heart that pushes blood through the arteries.  

The initial conditions are given as:  

𝑢(0) = 0,   𝑢′(0) = 0 

 

(38) 

meaning that at the starting point, the artery is at rest with no pressure or flow buildup. 

For this example, the exact analytical solution is chosen as: 

𝑢(𝑡) = −𝑡3 + 𝑡2 

 

(39) 

which describes a pulse-like motion the pressure or flow increases smoothly and then drops, similar to 

one heartbeat cycle. 

The corresponding forcing function 𝑔(𝑡) that ensures this solution satisfies equation (40) is given by: 

𝑔(𝑡) = [2 (
Γ(2.5) + Γ(1.5)

Γ(1.5)Γ(2.5)
+

𝑡2

2
) − 6𝑡 (

Γ(3.5) + Γ(2.5)

Γ(2.5)Γ(2.5)
+

𝑡2

6
)] 𝑡

1
5 

 

(40) 

by using the collocation technique with fractional orders 𝛾 = 1.5, 𝜇𝑘 = 0.5, and a polynomial degree of 

𝑁 = 4, the fractional differential equation can be written in its integral Volterra form as: 

𝑢(𝑡) = 𝛷(𝑡) + ∑
1

Γ(1.5)Γ(0.5)
∫ (𝑡 − 𝜉)0.5 [∫ (𝑡 − 𝜉)−0.5

𝜏𝑛−1

Γ(𝑛 + 1)Γ(𝑛 + 0.5)
𝑑𝜏

𝑡

0

] 𝑑𝜉
𝑡

0

1

𝑗=0

 

 

(41) 

Substituting the series form of 𝑢(𝑡) into (41) gives the matrix equation: 

𝛷(𝑡)𝐴 = Ψ(𝑡) − ∑
1

Γ(1.5)Γ(0.5)
∫ (𝑡

𝑡

0

1

𝑗=0

− 𝜉)0.5 [∫ (𝑡 − 𝜉)−0.5
𝜏𝑛−1

Γ(𝑛 + 1)Γ(𝑛 + 0.5)
𝑑𝜏

𝑡

0

] 𝑑𝜉 𝐴 

(42) 

where 
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Ψ(𝑡) = ∑
𝑢(𝑟)(𝑐)

𝑟!
(𝑡 − 𝑐)𝑟 +

1

Γ(1.5)
∫ (𝑡 − 𝜉)0.5𝑔(𝜉)𝑑𝜉

𝑡

0

𝑁

𝑟=0

 

 

(43) 

Since 𝑢(0) = 0,   𝑢′(0) = 0, the first part of Ψ(𝑡) becomes zero, leaving only the integral term involving 

𝑔(𝑡). Thus, the final integral form becomes: 

𝛷(𝑡)𝐴 =  Ψ(𝑡) 

 

(44) 

We use the 4-point Gauss–Legendre collocation at (𝑥1, 𝑥2, 𝑥3, 𝑥4 ) ≈

(0.0694318442, 0.3300094782, 0.6699905218, 0.9305681558) ≈ (
1

14
,
1

3
,
2

3
,
13

14
  ) after applying the 

initial constraints.  

By applying matrix inversion techniques in Maple 18 software, the unknown parameters are determined, 

yielding the following numerical approximation: 

𝑢𝑁(𝑡) = 1.00000000000000𝑡2 − 1.00000000000000𝑡3 

𝐸𝑟𝑟𝑜𝑟𝑁=|𝑢𝑁(𝑡) − 𝑢(𝑡)| = |(1.00000000000000𝑡2 − 1.00000000000000𝑡3) − (−𝑡3 + 𝑡2)| 

Table 2: Comparison of the exact solution, computed numerical approximation, and corresponding 

absolute error for Example 2. 

𝒕 𝑬𝒙𝒂𝒄𝒕 𝑺𝒐𝒍𝒖𝒕𝒊𝒐𝒏 𝒖(𝒕)

= −𝒕𝟑 + 𝒕𝟐
 

𝑵𝒆𝒘 𝒄𝒐𝒎𝒑𝒖𝒕𝒆𝒅 𝒗𝒂𝒍𝒖𝒆 𝒖𝟒(𝒕) 𝑬𝒓𝒓𝒐𝒓 (𝑵𝒆𝒘) 𝑬𝒓𝒓𝒐𝒓[𝟏𝟎] 

𝟎. 𝟎 0.000000000000000 0.000000000000000 0.0000000𝑒 − 15 4.29943𝑒 − 13 

𝟎. 𝟐 −3.200000000000000𝑒 − 2 −3.200000000000001𝑒 − 2 1.0000000𝑒 − 15 3.0000𝑒 − 11 

𝟎. 𝟒 −9.600000000000000𝑒 − 2 −9.600000000000001𝑒 − 2 1.0000000𝑒 − 15 1.0000𝑒 − 11 

𝟎. 𝟔 −1.440000000000001𝑒 − 1 −1.440000000000001𝑒 − 1 0.0000000𝑒 − 15 1.0000𝑒 − 10 

𝟎. 𝟖 −1.280000000000000𝑒 − 1 −1.280000000000001𝑒 − 1 1.0000000𝑒 − 15 3.0000𝑒 − 10 

𝟏. 𝟎 0.000000000000000 0.000000000000000 0.0000000𝑒 − 15 3.6122𝑒 − 10 

The fractional-order Windkessel in Caputo fractional derivative model gives a simple but more realistic 

way to describe how blood flows through large arteries. The results in Table 2 show that the numerical 

solution closely matches the exact one, with very small errors across all evaluated points. This 

demonstrates that the adopted collocation-based fractional numerical method is both stable and highly 

accurate in capturing the system’s real dynamics. Since real arteries are viscoelastic and have memory 

(they slowly return to shape after being stretched), using the Caputo fractional derivative helps represent 
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this effect accurately. This makes the model and the numerical scheme reliable tools for studying how 

blood pressure and flow change with time in the human body. 

4. Conclusion 

This study successfully developed and implemented an enhanced collocation-based computational 

framework for solving multi-term fractional differential equations (MT-FDEs) arising in engineering 

systems. The proposed approach utilizes polynomial series expansion and a structured collocation 

technique to transform complex fractional-order problems into solvable algebraic systems. By employing 

Caputo-type fractional derivatives and fractional integral operators, the framework effectively captures 

the memory and hereditary properties that are fundamental to real-world engineering phenomena such as 

viscoelastic vibration, structural damping, and blood flow in arteries. The effectiveness of the method 

was demonstrated through two representative engineering problems a viscoelastic bridge deck model and 

a fractional-order Windkessel model in Caputo-type fractional derivative form where the numerical 

results closely matched the exact analytical solutions, yielding negligible errors across all evaluated 

points. This excellent agreement confirms the accuracy, stability, and efficiency of the proposed 

numerical method in handling fractional systems with multiple derivative terms. The study therefore 

establishes the collocation-based fractional framework as a powerful and reliable computational tool for 

analyzing engineering systems that exhibit memory-dependent behavior. Furthermore, the approach 

demonstrates significant potential for broader applications in science and engineering, offering a balance 

between mathematical rigor and computational simplicity. Future work may focus on extending this 

framework to nonlinear, variable-order, and multidimensional fractional systems to enhance its capability 

in modeling and simulating more complex engineering processes 
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