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Abstract

This paper introduces an innovative hybrid implicit quarter-step block method designed for solving first-order ordinary differential
equations (ODEs) numerically. Traditional linear multistep methods often necessitate the creation of separate predictors, which can
ramp up both computational costs and complexity. To tackle this issue, we propose a continuous implicit hybrid method that utilizes
interpolation and collocation of a power series approximation at both grid and off-grid points within a single integration interval.
By evaluating the continuous formulation at quarter-step points, we derive discrete block formulas that come together to create a
unified, self-starting block method. This approach allows for the simultaneous generation of numerical approximations at four
consecutive points, eliminating the need for a separate predictor. Weve established that this method is zero-stable, consistent, and
therefore convergent. To evaluate the effectiveness of our proposed method, we conducted numerical experiments across a variety
of initial value problems. The findings reveal that our new quarter-step block method not only achieves greater accuracy but also
outperforms existing methods of similar order, highlighting its potential as a powerful and efficient computational tool for integrating
first-order ODEs.

Keywords: Block Method; Quarter-Step; Hybrid Method; Ordinary Differential Equations; Numerical
Solution; Implicit Scheme; Convergence Analysis.

1. Introduction

Ordinary differential equations (ODES) are essential for modeling a wide range of physical, biological, and
engineering systems. First-order ODEs, in particular, arise in various fields, from population dynamics to
electrical circuits and chemical kinetics. While there are sufficient numerical techniques available for solving
these equations, the ongoing search for more efficient and accurate methods continues to be a large topic in
research.

Traditional numerical methods, like single-step technigues such as Runge-Kutta and multistep methods like
Adams-Bashforth-Moulton, achieve varying trade-offs between accuracy and computational cost. However,
these methods can face challenges related to stability and stiffness, especially when tackling certain real-world
problems [1]. Block methods have emerged as a solution to enhance parallelizability and computational
efficiency, gaining traction for their ability to process multiple points at once [2]. The hybrid implicit quarter-
step method is an exciting new development aimed at boosting numerical accuracy and stability without
sacrificing computational efficiency. This quarter-step technique sharpens solution approximations by
assessing intermediate points at shorter intervals, which not only improves accuracy but also cuts down on
local truncation errors when compared to traditional half-step methods [3], [4]. By adding more sub-interval
calculations, this method achieves a higher level of precision while still keeping computational efficiency in
check.

In this paper, we introduce a new hybrid implicit quarter-step block method specifically designed for the
numerical solution of first-order ODEs. This method merges the efficiency of block methods with the reliability
of implicit schemes and the enhanced accuracy provided by quarter-step formulations. We present a theoretical
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analysis of its stability and convergence, along with numerical experiments that showcase its advantages over
some existing methods. We consider the numerical solution of first-order initial value problems of the form:

y' =fxy), asx<b y(x) =y (1.1)
Many researchers have played a key role in advancing continuous linear multistep methods for solving
differential equations. Notable contributions come from scholars like [5], [6], [7], [8], and [9]. These experts
have introduced a variety of techniques, including predictor-corrector methods and discrete block methods.
2. Derivation of the Block Hybrid Method
In this section, we will utilize the concepts introduced in preceding sections to construct block hybrid method
aimed at solving first-order initial value problems in differential equation expressed in the form (1.1). The
power series as an approximate solution of the form:

s+r—1 21

y(x) = z ax’

j=0

2.2  Formulation of the Block Hybrid Method

The power series polynomial (2.1) is consider as an approximate solution of (1.1).
Differentiate (2.1) once to yield,
s+r—1 22

Y@ =h ) jap
=0

Where o € Rfor j =0 (i) i and y(x) is continuously differential. Let the solution of (1.1) be sought on the
integration interval [a, b] with a constanth step-size defined by h = x; — x;_4,j = 0,1,2, ..., N, substituting
equation (2.2) into (1.1) gives,

s+r—1 2.3

fey)=h ) jap
=0

We interpolate (2.1) at x,,,,,v = 0 and Collocate (2.3) at x,,;5, S = O'%'E'E'?'%'E'Z’ gives a system of

linear equation in the form:

AX =U 2.4
Where
A=[ay a; a; a3 a, as ag a; ag ao|’
T
U= ¥ fn fn+21—8'fn+1—14' fn+23—8'fn+%'fn+%,fn+%' fn+%
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n 14 n+ﬁ Tl+ﬁ Tl+ﬁ n+ﬁ n+ﬁ Tl+ﬁ
0 1 2x 3 3x® 3 4x> 3 5x' 3 6x° 3 7x' 3 8x 3
)(:: n 28 n+§§ n+§§ n+§§ n+§§ n+§§ n+§§
0 1 2x 1 3x31 4x°; 5x'; 6x°; 7x’ 1 8x 4
n 7 Tl+7 Tl+7 n+7 n+7 Tl+7 Tl+7
0 1 2x s 3x%> 5 4x> 5 S5x* 5 6x% 5 7x7 5 8x7 ¢
n+ﬁ n+ﬁ Tl+ﬁ TL+E Tl+% n+ﬁ Tl+%
0 2x 3 3x% 3 4x® 5 5x* 5 6x® 5 7x7 5 8x7 5
n+TZ n+IZ n+IZ n+iz n+iz n+iz n+iz
0 1 2x 1 3x31 4x°; 5x'; 6x°; 7x’ ;1 8x 4
| n Z TL+Z TL+Z n+Z n+z 7'7.+Z n+z_
Solving a;s in (2.4) and substituting back into (2.1) gives a linear block scheme as:
2.5

y(&) = ag(t)yo +h [ﬁo(t)fo + ﬁ%(t)f% + ﬁi(t)fﬁ + ﬁ%(t)f% + ﬂ;(t)f; +

Bs Of s +B3(Of 3 + B0

28 28 14 14 4 4
Where ay = 1

Bo = —==(90354432t® — 103262208t” + 49479808 t® — 12907776t> + 1990086t* — 183848¢>

+ 9801¢% — 270¢)

270

——(316240512t® — 348509952t” + 158658080 t° — 38377584t° + 5252016t* — 393372t>

1
B@ 135
+ 13230¢2)

1
f1 = —E(105413504t8 — 111867392t + 48404160 t® — 10910144t> + 1347647t* — 86142t

14

+ 2205t%)
Bz = T35 (1581202560¢° — 161347200017 + 664212640 t° — 140487312¢° + 16011240t*
— 930020 t* + 22050t%)
B1 = —~¥1——(3162405120t8—-3097866240t7+1215482240t6 243403776t° + 26188050¢*

= 270
— 1446480 t* + 33075t

1
s = E(105413504t8 — 98959616t + 37109856 t° — 7106960t + 735392t* — 39396t + 882 t?)

ﬂli = —% (316240512t® — 283971072t” + 102186560 t° — 18900672t> + 1902621t* — 99862t>
+ 2205t?)
B% 135 ——(45177216t% — 38723328t” + 13445600 t® — 2420208t° + 238728t* — 12348t> + 270 t?)
Where t =

Solving (2.5) for the independent solution gives a continuous block method in the form:
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u-1 s 2.6
g™
Yn+k = Z Tyém) + h“Z 0; (%) fu+
=0

j=0

Where p is the order of the differential equation, s is the collocation points. Hence the coefficient of £, ; in
(2.6)

1
Oy = —m(90354432t —103262208t” + 49479808 t° — 12907776t> + 1990086t* — 183848¢>
+ 9801t* — 270¢t)

1
o1 = 135 ——(316240512t® — 348509952t” + 158658080 t° — 38377584t° + 5252016t* — 393372t>
28

+ 13230t%)
1
o1 = —E(105413504t8 — 111867392t + 48404160 t° — 10910144t> + 134764 7t* — 86142t
14
+ 2205t%)
1
03 =T ——(1581202560t° — 1613472000t” + 664212640 t° — 140487312t> + 16011240t*
28
— 930020 t* + 22050t%)
1
o1 = —m(3162405120t —3097866240t” + 1215482240 t® — 243403776t> + 26188050t*
7

— 1446480 t* + 33075t%)

1
05 = E(105413504t8 —98959616t” + 37109856 t° — 7106960t> + 735392t* — 39396t> + 882 t%)
28

1
g3 = ~I3% ——(316240512t% — 283971072t” + 102186560 t° — 18900672t° + 1902621t* — 99862¢3
14

+ 2205t2)

1
01 = 135 —— (45177216t® — 38723328t” + 13445600 t° — 2420208¢t> + 238728t* — 12348t> + 270 t?)
1

Where t = =22

Evaluating (2.6) att = 0 (i)i gives a discrete block formula of the form

Ym = ey, + hdf (y,) + hbf (V) 2.7

Where e,d arer X r matrix

T
751 41 265 139 265 41 751
Hence d = [ ]

69120 3920 25088 13230 25088 3920 69120

_y1y1y3y1ysy3y1]
Ym = [ Tl+% Tl+ﬁ Tl+% Tl+7 ‘l’l+ﬁ Tl+ﬁ Tl+Z
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0 0 0 0 0 0 1
00 0O0O0TUO0 1
00 0O0O0TUO0 1
e=|l0 0 0 0 0 0 1
00 0O0O0TUO0 1
00 0O0O0TUO0 1
0 0 00 0 0 1.
- 139849 4511 123133 88547 1537 11351 275
3386880 125440 3386880 3386880 125440 3386880 677376
733 71 17 1927 13 29 2
13230 11760 735 105840 1470 11760 6615
1359 1377 5927 3033 1377 373 9
25088 125440 125440 125440 125440 125440 25088
,_| 362 2 446 2 16 2
| 6615 245 6615 13230 245 " 6615 6615
36725 775 4625 13625 1895 275 275
677376 75264 75264 677376 75264 75264 677376
27 27 17 27 27 41 .
490 3920 245 3920 490 3920
3577 49 2989 2989 49 3577 751
L 69120 2560 69120 69120 2560 69120 69120 A

3. Analysis of Basic Properties of the Block Hybrid Method

The necessary and sufficient conditions for new method and their associated block method are analyzed to
establish their validity. These properties include; order and error constant, consistency and zero-stability.

3.1

Order and Error Constant

This subsection establishes the linear operator (D[y(xj) ; h] associated with the newly derived method.

Definition 3.1

The block linear multi step method of first order ODEs is said to be of order p if ¢ = ¢; = ¢, =+ = ¢, and
cp+1 # 0. Thus ¢’s are the coefficient of h and y function, while c¢,,; # 0 is called the error constant.

Using Taylor series expansion we have

751

3577

49 2989

2989

49

y 1:yn+h|:

n+=
4

Wt
69120

+
69120 n+=

+
2560 m=

28 14

3 + f 1 + 5 +ﬂ 3
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Y, o Y, o Y, 2 Y, 4L Y, 2 andy, J%are of order p = 9 > 1 with the following error constant in table 3.1

The order of the method is 9 and error constant is— It also follows that

below:

Table 3.1 Order and Error Constant of the new Method

Scheme Order Error constant
Y .1 9 ~ 33953

28 38387100963726950400
yo.1 9 B 17

14 24481569492172800
Vo3 9 _ 369

28 47391482671267400
Yol 9 _ 107

7 149949613139588400
VS 9 _ >

28 31336408949981184
Vs 3 9 _ 0

14 14809838334771200
Yol 9 _ 167

4 111915746249932800

3.2  Consistency of the Method [7]

The block method of linear multi step method is said to consistent if it has order p = 9 > 1, hence the method
IS consistent.

3.3  Zero Stability of the Method

p(A) = det[2AW — A®] =0
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Where
10 000 00 0000 O0TO0 1 200000 -1
(0100000\(0000001\‘/0,10000—1\
0010000 0000O0O0T11| [00 2000 -1 |
Aloo 010 0 0 —|00 0000 1|l=loo0oo0o 200 -1/
0000100 00 0O0O0TO0 1 0000410 -1
\0 000010 \0 0000 0 1 00000 2 -1 /
000 O0O0TO0 1 00 0O0O0TO0 1 000000 A1—1

Determinant: 7 — 26 = 1(1 — 1)
Therefore, 1, = 1, = A3 = 1, = 15 = 44 = 0,4, = 1. Therefore, the method is zero stable [8]

Dahlquist's theorem states that, the new method is convergent and consistency and zero-stability are analyzed
and fulfilled.

3.4  Convergence

Theorem 3.1

Consistency and zero-stability are both required and sufficient conditions for a linear multistep method to be
convergent. Therefore, the new method is convergent since it is consistent and zero-stable [9].

4 Results and Discussions

This section presents and discusses the results derived from various numerical examples. Additionally, the
effectiveness of the proposed method is evaluated using three differential equations. For each case, the
approximate solutions are compared to numerical benchmarks, and the absolute errors from the new method
are contrasted with those from existing approaches to assess its accuracy and performance.

4.2 Numerical Examples

To evaluate the effectiveness of the developed methods, we present several numerical examples.

Problem 1
We consider a linear first ordinary differential equation
y'=-1,y(00=1,0<x<1,h=0.1
Exact solution y(x) = e™
This problem was solved by [10] using a block method of order seven. The results are shown in Table 1.
Table 1 for problem 1

X-value | Exact solution Computed solution Error Error in [10]
0.1000 | 0.9048374180359595 | 0.9048374180359640 | 4.440892 x 101° 1.95961 x 10
0.2000 | 0.8187307530779819 | 0.8187307530779899 | 7.993606 x 101° 4.81316 x 10711
0.3000 | 0.7408182206817179 | 0.7408182206817289 | 1.099121 x 1014 4.81316 x 1071
0.4000 | 0.6703200460356392 | 0.6703200460356525 | 1.332268 x 1014 5.80682 x 101!
0.5000 | 0.6065306597126333 | 0.6065306597126484 | 1.509903 x 1014 6.56779 x 1071
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0.6000 | 0.5488116360940263 | 0.5488116360940427 | 1.643130 x 107 7.13132 x 1011

0.7000 | 0.4965853037914094 | 0.4965853037914269 | 1.748601 x 107 7.52815 x 101!

0.8000 | 0.4493289641172215 | 0.4493289641172394 | 1.798561 x 1014 7.78485 x 10711

0.9000 | 0.4065696597405989 | 0.4065696597406173 | 1.831868 x 107 7.92453 x 1011

1.0000 | 0.3678794411714422 | 0.3678794411714605 | 1.837419 x 1014 7.96713 x 1011
Problem 2

We consider a linear first-order ordinary differential equation:
y =x —y,y(0)=10<x <1h =01
Exact solution: y(x) = x + e ™ — 1.

This problem was solved by [10] using a block method of order seven. The results are shown in Table 2.
Table 2 for problem 2

X-value | Exact solution Computed solution Error Errorin [10]

0.1000 | 0.0048374180359596 | 0.0048374180359641 | 4.447831 x 107> 1.9595 x 10711
0.2000 | 0.0187307530779819 | 0.0187307530779900 | 8.076873 x 10~ %> | 3.54623 x 10711
0.3000 | 0.0408182206817178 | 0.0408182206817289 | 1.106060 x 10~* | 4.81315x 10711
0.4000 | 0.0703200460356392 | 0.0703200460356526 | 1.333655 x 10~* | 5.80680 x 10711
0.5000 | 0.1065306597126334 | 0.1065306597126485 | 1.502964 x 10~ * | 6.56779 x 10711
0.6000 | 0.1488116360940266 | 0.1488116360940428 | 1.618150 x 10~ * | 7.13132 x 10711
0.7000 | 0.1965853037914096 | 0.1965853037914268 | 1.718070 x 107* | 7.52814 x 107!
0.8000 | 0.2493289641172218 | 0.2493289641172395 | 1.762479 x 10~ 1* | 7.78485 x 10711
0.9000 | 0.3065696597405994 | 0.3065696597406174 | 1.804112 x 1071* | 7.92403 x 1071
1.0000 | 0.3678794411714426 | 0.3678794411714607 | 1.815215 x 107* | 7.96712 x 1011

Problem 3

We consider a first-order ordinary differential equation:

Exact solution: y(x) = ez*

!

y:

1

x*y,y(0)=10<x <1h =01

This problem was solved by [10] using a block method of order seven. The results are shown in Table 3.

Table 3 for problem 3
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X-value | Exact solution Computed solution Error Errorin [10]

0.1000 | 1.0050125208594010 | 1.0050125208593967 | 4.218847 x 10> | 2.6067 x 10!
0.2000 | 1.0202013400267558 | 1.0202013400267389 | 1.687539 x 1014 | 8.4790 x 10!
0.3000 | 1.0460278599087169 | 1.0460278599086765 | 4.041212 x 10 | 1.8684 x 10
0.4000 | 1.0832870676749586 | 1.0832870676748780 | 8.060219 x 104 | 3.5701 x 10°1°
0.5000 | 1.1331484530668263 | 1.1331484530666809 | 1.454392 x 10™* | 6.1054 x 107
0.6000 | 1.1972173631218104 | 1.1972173631215617 | 2.486900 x 10" | 1.0157 x 10°°
0.7000 | 1.2776213132048868 | 1.2776213132044756 | 4.112266 x 1013 | 1.6445 x 10
0.8000 | 1.3771277643359574 | 1.3771277643352922 | 6.652456 x 10713 | 2.6158 x 10
0.9000 | 1.4993025000567675 | 1.4993025000557072 | 1.060263 x 102 | 4.1110 x 10°°
1.0000 | 1.6487212707001289 | 1.6487212706984566 | 1.672218 x 102 | 6.4070 x 10°

5. Discussion of Results

We considered three numerical examples in this paper. The three examples were earlier solved by [10], where
they applied an order seven block method. We applied a new order nine quarter-step hybrid block method to
solve these three problems and from the results obtained, the quarter-step method performed better than the
existing method with which we compared our results.
6. Conclusion
We have proposed an order nine hybrid implicit quarter-step method for the solution of first order ordinary
differential equations. Our method was found to be zero stable, consistent and converges. The numerical

examples show that our method gave better accuracy than the existing method.
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