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Abstract 

In this paper, partial ordered relation is researched, finite geometry and its subgeometries are explored. An investigation of 

topology which exists in near-linear and non-near-linear finite geometry Gd is delved into. The outcome of this work shows 

an existence of the concept of topology and topological space on non-near-linear finite geometry with variables in Zd. The 

complexity shown in this work demonstrated the existence of relationship between a geometry as a structure and its 

subgeometries as its substructures. 
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1. INTRODUCTION 

Let 𝑍+represents a set of positive integers. 𝑍𝑑, the ring of integers modulo 𝑑,  where 𝑑 ∈ 𝑍+. For quite some time, finite 

quantum systems with variables in 𝑍𝑑 had received enormous attention with a special focus on mutually unbiased bases. 

Likewise in recent times, the weak mutually unbiased bases are getting more interest from researchers [1-2]. This might be 

because such concepts have a significant role in quantum computation and information. For instance, [3] discussed an 

existence of lattice structure between lines in near-linear finite geometries and its sublines. This paper establishes a 

relationship between topological space and the concept of non-near-linear finite geometry with variables in 𝑍𝑑. The lines of 

this non-near-linear finite geometry are taken both through the origin (0,0) and through shifted arbitrary origin(𝑎, 𝑏) [2-3]. 

Previous studies focused on near-linear finite geometry. In this type of geometry, two lines have at most one point of 

intersection. An extension to this phenomenon is called non-near-linear geometry. It is a situation where two lines intersect at 

more than one point [4]. 

 

In this work, each element of the set {𝐷(𝑑)} represents a finite geometry. The notation {𝐷(𝑑)} represents the set of proper 

divisors of 𝑑. Any pairs of set of divisors form a topology in this work. 

 

 The breakdown of this work is as follows; concepts used in this work are defined in section 2, titled, preambles. Section 3 

focuses on near-linear geometry. In section 4, non-near-linear finite geometry and its subgeometry is discussed. Topology 

and topological spaces in non-near-linear finite geometry are showcased in section 5. In section 6, the result of the findings is 

demonstrated using examples.  The conclusion of this work is given in section 7.    

 

2. PREAMBLES 

i. The ring of integers modulo 𝑑 is denoted by 𝑍𝑑  where𝑑 ∈ 𝑍+, and 𝑍+ represents set of positive integers. In this 

work, 𝐺𝑑 = 𝑍𝑑
2.  So we use them interchangeably. 

ii. |𝑍∗| is 𝜙(𝑑) where 𝑍
∗
 represents the set of invertible element in 𝑍𝑑 and 𝜙(𝑑) is referred to as Euler Phi function. It 

is defined as  

𝜙(𝑑) = ∏ (𝑝𝑗 − 1)ℓ
𝑗=1         (1) 

iii. 𝜓(𝑑) is called Dedekind psi function where; 
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𝜓(𝑑) = ∏ (𝑝𝑗 + 1), 𝑝𝑗 = 𝑝𝑟𝑖𝑚𝑒ℓ
𝑗=1                         (2) 

Here in this work, 𝑑 is expressed as products of power of an integer. 

 

3. NEAR-LINEAR FINITE GEOMETRY 

In general concept, a space 𝑆(𝑃, 𝐿) is a system of points 𝑃 and line 𝐿 such that every line 𝐿 is a subset of 𝑃 and certain 

axioms are satisfied. 

A near linear space is an incident structure 𝐼(𝑃, 𝐿) of points P and lines 𝐿 such that; 

i. Any line has at-least two points. 

ii. Two lines meet in at most one point. 

In this work, a near-linear space is defined as follows: 

𝐺𝑑 = (𝐿𝑑 , 𝑃𝑑) 

Where, 𝑃𝑑 represents points on the line 𝐿𝑑. 

𝐿𝑑 denotes lines with point 𝑃𝑑 , where  

𝐿𝑑 = {𝛼𝑎, 𝛼𝑏|𝑎, 𝑏𝜖 𝑍𝑑 , 𝛼𝜖 𝑍𝑑}     (1) 

Lemma: Two distinct lines of a near-linear finite geometry meet in at-most one point. 

Proof: 

Let 𝐺𝑑 = 𝑍𝑑
2 

𝑍𝑑
2 =  𝑍𝑑 × 𝑍𝑑  represents lines with points in 𝐺𝑑 .  For 𝑑 a prime, intersection of any pair of arbitrary lines yields a 

point. Hence confirm the lemma. 

4.  NON-NEAR-LINEAR GEOMETRY AND ITS SUB-GEOMETRY WITH VARIABLES IN 𝑍𝑑   

This subsection discusses the concept of finite geometry. Here two lines in a phase-space 𝑍𝑑
2 meet in at least one point. 

Equation (1) discusses a line through the origin (0,0). This concept was discussed in 2. Shifted origin is introduced and 

investigated in this work. In it a line through an arbitrary point 𝜗, 𝑠 is named as a shifted origin. It is defined as follows: 

 

𝐿𝑑 = {𝛼𝑎 + 𝜗, 𝛼𝑏 + 𝑠|𝑎, 𝑏, 𝜗, 𝑠 𝜖 𝑍𝑑 , }, 𝛼𝜖 𝑍𝑑    (2) 

𝛼𝜖 𝑍𝑑 is a cyclic module over a ring of integer modulo d. 

 Mathematically, it is defined as the pair (𝑃𝑑 , 𝐿𝑑) in 𝐺𝑑 = 𝑍𝑑
2. Here,  

𝑃𝑑 represents points in a line and 𝐿𝑑 represents lines in 𝐺𝑑 where, 

𝑃𝑑 = {(𝑒, 𝑓)|𝑒, 𝑓 ∈ 𝑍𝑑}              (3) 

From some results obtained, we confirm the following propositions. 

1. If 𝑏 ∈ 𝑍𝑑
∗  then 𝐿(𝛼, 𝛽) = 𝐿(𝑏𝛼, 𝑏𝛽) 
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Now, 𝑍𝑑
∗  represents the set of invertible elements in 𝑍𝑑 

Also, if 𝑏 ∈ 𝑍𝑑 − 𝑍𝑑
∗  then 𝐿(𝛼, 𝛽) 𝑚𝑜𝑑(𝑑) ⊂ 𝐿(𝑏𝛼, 𝑏𝛽)     (4) 

Hence 𝐿(𝑏𝛼, 𝑏𝛽) ≺ 𝐿(𝛼, 𝛽), where ≺ represents partial ordering. 

We confirm that 𝐿(𝛼, 𝛽) is a maximal line in 𝐺𝑑 if 𝐺𝐶𝐷(𝛼, 𝛽) ∈ 𝑍𝑑
∗  and 𝐿(𝛼, 𝛽) is a subline in 𝐺𝑑 if 𝐺𝐶𝐷(𝛼, 𝛽) ∈

𝑍𝑑 − 𝑍𝑑
∗  

2. Suppose we define a line in the finite geometry 𝐺𝑑 as in the equation (3) 

Now 𝐿(𝛼, 𝛽) can also be;  

𝐿(𝑠𝛼, 𝑠𝛽) = {(𝑠𝜉𝛼, 𝑠𝜉𝛽)|𝜉 ∈ 𝑍𝑑}𝜉 ∈ 𝑍𝜉𝑑                                         (5) 

at the same time the line 𝐿(𝜉𝛼, 𝜉𝛽) in 𝐺𝜉𝑑 is a subline of   

𝐿(𝛼, 𝛽) = {(𝑠′𝛼, 𝑠′𝛽)|𝑠′ = 0, … , 𝜉𝑑 − 1} 

3. If two maximal lines have 𝑞 points in common𝑞|𝑑. 

The 𝑞 points give a subline 𝐿(𝛼, 𝛽) where 𝛼, 𝛽 ∈
𝑑

𝑞
𝑍𝑞 . 

If we consider the sub-geometry𝐺𝑞 , the subline 𝐿(𝛼, 𝛽) in 𝐺𝑑 is a maximal line in 𝐺𝑞 . There is a 𝜓(𝑑) maximal line in sub-

geometry 𝐺𝑞 of finite geometry𝐺𝑑. 

The ring of integers 𝑍𝑑 and the Cartesian products, that is 𝑍𝑑 × 𝑍𝑑 is used extensively in this work to form finite geometry 

where all the lines are derived. The lines under this geometry form a non-near-linear finite geometry. 

𝐺𝑑 = 𝑍𝑑
2 = 𝑍𝑑 × 𝑍𝑑              (6) 

5.   TOPOLOGY AND TOPOLOGICAL SPACE ON NON-NEAR-LINEAR FINITE 

GEOMETRY 

A topological space is a set endowed with a structure called a topology, which allows defining continuous deformation of 

subspaces, and more generally, all kinds of continuity [5]. 

This section demonstrates how a phase-space finite geometry forms a topological space with its subsets as topology. This is 

discussed further thus:  

Definitions V.I: A set 𝑋 together with the family of its subset 𝜏 is a topological space if fulfils the following conditions: 

i. The empty set and the whole set are elements of 𝜏, that is, 𝜑, 𝑋 ∈ 𝜏 

ii. The union of any finite member of 𝜏is also an element of 𝜏 

iii. The intersection of any finite member of 𝜏is also an element of 𝜏 
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Definitions V.II: A set 𝑋 together with the topology𝜏, that is (𝑋, 𝜏) is a topological space. 

Hence in this work, a non-near-linear geometry with variables in 𝑍𝑑 where d is a non-prime integer is a phase-space that 

forms a topological space. The ring of integers modulo 𝑑 is considered to be the set 𝑋, while the geometric combination 𝐺𝑑 =

𝑍𝑑
2 = 𝑍𝑑 × 𝑍𝑑 is taken as the topology. Thus, (𝑍𝑑 , 𝑍𝑑 × 𝑍𝑑) is a topological space. This phenomenon is shown to exist both 

when the geometric lines are taken through any arbitrary points in the geometry as defined in equations 3 and 4.  

 

5. EXAMPLES  

(a) Taking the geometry 𝐺10 = 𝑍10
2  
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In this example, we want to show how the finite geometric space 𝐺10 = 𝑍10
2  forms a topological space. We take the origin of 

the geometric lines from (0,0)  

(a) Taking the geometry 𝐺10 = 𝑍10
2 , lines of the geometry are shown thus  

L(0,0) is distinct 

L(0,1) ={(0,0)(0,1)(0,2)(0,3)(0,4)(0,5)(0,6)(0,7)(0,8)(0,9)} 

L(0,2) ={(0,0)(0,2)(0,4)(0,6)(0,8)(0,0)(0,2)(0,4)(0,6)(0,8)} 

L(0,5) is distinct 

L(1,0) ={(0,0)(1,0)(2,0)(3,0)(4,0)(5,0)(6,0)(7,0)(8,0)(9,0)} 

L(1,1)={(0,0)(1,1)(2,2)(3,3)(4,4)(5,5)(6,6)(7,7)(8,8)(9,9)} 

L(1,2) ={(0,0)(1,2)(2,4)(3,6)(4,8)(5,0)(6,2)(7,4)(8,6)(9,8)} 

L(1,3) ={(0,0)(1,3)(2,6)(3,9)(4,2)(5,5)(6,8)(7,1)(8,4)(9,7)} 

L(1,4) ={(0,0)(1,4)(2,8)(3,2)(4,6)(5,0)(6,4)(7,8)(8,2)(9,6)} 

L(1,5) ={(0,0)(1,5)(2,0)(3,5)(4,0)(5,5)(6,0)(7,5)(8,0)(9,5)} 

L(1,6) ={(0,0)(1,6)(2,2)(3,8)(4,4)(5,0)(6,6)(7,2)(8,8)(9,4)} 

L(1,7) ={(0,0)(1,7)(2,4)(3,1)(4,8)(5,5)(6,2)(7,9)(8,6)(9,3)} 

L(1,8) ={(0,0)(1,8)(2,6)(3,4)(4,2)(5,0)(6,8)(7,6)(8,4)(9,2)} 

L(1,9) ={(0,0)(1,9)(2,8)(3,7)(4,6)(5,5)(6,4)(7,3)(8,2)(9,1)} 

L(2,0) ={(0,0)(2,0)(4,0)(6,0)(8,0)(0,0)(2,0)(4,0)(6,0)(8,0)} 

L(2,1) ={(0,0)(2,1)(4,2)(6,3)(8,4)(0,5)(2,6)(4,7)(6,8)(8,9)} 

L(2,2) ={(0,0)(2,2)(4,4)(6,6)(8,8)(0,0)(2,2)(4,4)(6,6)(8,8)} 

L(2,3) ={(0,0)(2,3)(4,6)(6,9)(8,2)(0,5)(2,8)(4,1)(6,4)(8,7)} 

L(2,4) ={(0,0)(2,4)(4,8)(6,2)(8,6)(0,0)(2,4)(4,8)(6,2)(8,6)} 

L(2,5)= {(0,0)(2,5)(4,0)(6,5)(8,0)(0,5)(2,0)(4,5)(6,0)(8,5)} 

L(2,6) ={(0,0)(2,6)(4,2)(6,8)(8,4)(0,0)(2,6)(4,2)(6,8)(8,4)} 

L(2,7) ={(0,0)(2,7)(4,4)(6,1)(8,8)(0,5)(2,2)(4,9)(6,6)(8,3)} 

L(2,8) ={(0,0)(2,8)(4,6)(6,4)(8,2)(0,0)(2,8)(4,6)(6,4)(8,2)} 

L(2,9) ={(0,0)(2,9)(4,8)(6,7)(8,6)(0,5)(2,4)(4,3)(6,2)(8,1)} 

L(5,0) is distinct 
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L(5,1) ={(0,0)(5,1)(0,2)(5,3)(0,4)(5,5)(0,6)(5,7)(0,8)(5,9)} 

L(5,2) ={(0,0)(5,2)(0,4)(5,6)(0,8)(5,0)(0,2)(5,4)(0,6)(5,8)} 

L(5,5) is distinct 

The following results were generated from equation (2)
 

𝐿(𝛼, 𝛽) = {(𝑠𝛼, 𝑠𝛽)|𝛼, 𝛽 ∈ 𝑍𝑑}𝑠 ∈ 𝑍𝑑 

𝐿(0,1) ≅ 𝐿(0,3) ≅ 𝐿(0,7) ≅ 𝐿(0,9)
 

𝐿(1,0) ≅ 𝐿(3,0) ≅ 𝐿(7,0) ≅ 𝐿(9,0)
 

𝐿(1,1) ≅ 𝐿(3,3) ≅ 𝐿(7,7) ≅ 𝐿(9,9)
 

𝐿(1,2) ≅ 𝐿(3,6) ≅ 𝐿(7,4) ≅ 𝐿(9,8)
 

𝐿(1,3) ≅ 𝐿(3,9) ≅ 𝐿(7,1) ≅ 𝐿(9,7)
 

𝐿(1,4) ≅ 𝐿(3,8) ≅ 𝐿(7,2) ≅ 𝐿(9,6)
 

𝐿(1,5) ≅ 𝐿(3,5) ≅ 𝐿(7,5) ≅ 𝐿(9,5)
 

𝐿(1,6) ≅ 𝐿(3,8) ≅ 𝐿(7,2) ≅ 𝐿(9,4)
 

𝐿(1,7) ≅ 𝐿(3,1) ≅ 𝐿(7,9) ≅ 𝐿(9,3)
 

𝐿(1,8) ≅ 𝐿(3,4) ≅ 𝐿(7,6) ≅ 𝐿(9,2)
 

𝐿(1,9) ≅ 𝐿(3,7) ≅ 𝐿(7,3) ≅ 𝐿(9,1) 

𝐿(2,1) ≅ 𝐿(6,3) ≅ 𝐿(4,7) ≅ 𝐿(8,9)
 

𝐿(2,3) ≅ 𝐿(6,9) ≅ 𝐿(4,1) ≅ 𝐿(8,7)
 

𝐿(2,5) ≅ 𝐿(6,5) ≅ 𝐿(4,5) ≅ 𝐿(8,5)
 

𝐿(2,7) ≅ 𝐿(6,1) ≅ 𝐿(4,9) ≅ 𝐿(8,3) 

𝐿(0,2) ≅ 𝐿(0,4) ≅ 𝐿(0,6) ≅ 𝐿(0,8) 

𝐿(2,0) ≅ 𝐿(4,0) ≅ 𝐿(6,0) ≅ 𝐿(8,0) 

𝐿(2,2) ≅ 𝐿(4,4) ≅ 𝐿(6,6) ≅ 𝐿(8,8) 

𝐿(2,4) ≅ 𝐿(4,8) ≅ 𝐿(6,2) ≅ 𝐿(8,6) 

𝐿(2,6) ≅ 𝐿(4,2) ≅ 𝐿(6,8) ≅ 𝐿(8,4) 

𝐿(2,8) ≅ 𝐿(4,6) ≅ 𝐿(6,4) ≅ 𝐿(8,2) 

𝐿(0,5),       𝐿(5,0),       𝐿(5,5) 
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Checking for topological space using the axioms of topology and topological space 

Axiom 1: 

𝜑, 𝑋 ∈ 𝜏, here 𝑋 = 𝑍10, 𝜏 = 𝑍10 × 𝑍10. 

Clearly the empty set 𝜑 is an element of the topology. That is 𝜑 = 𝐿(0,0) ∈ 𝜏 = 𝑍10 × 𝑍10 

Again, the whole set 𝑋 is an element of 𝜏 

Hence Axiom 1 is satisfied. 

Axiom 2: 

Finite union of subset of 𝑍10 × 𝑍10is also an element of 𝑍10 × 𝑍10. 

Clearly the union of any finite subset of 𝑍10 × 𝑍10 is a member element of 𝑍10 × 𝑍10. That is; 

i. 𝐿(1,1) ∪ 𝐿(2,5) ∪ 𝐿(8,2) ∈ 𝑍10 × 𝑍10 

ii. 𝐿(3,4) ∪ 𝐿(5,6) ∈ 𝑍10 × 𝑍10 

iii. 𝐿(0,5) ∪ 𝐿(5,0) ∪ 𝐿(5,5) = {(0,0)(0,5)(5,0)(5,5)} ∈ 𝑍10 × 𝑍10 

Hence Axiom 2 is satisfied. 

Axiom 3 

Finite intersection of elements of 𝑍10 × 𝑍10 is again an element of 𝑍10 × 𝑍10 

Clearly the finite intersection of elements of 𝑍10 × 𝑍10 is an element of 𝑍10 × 𝑍10 

i. 𝐿(1,1) ∩ 𝐿(2,5) = (0,0) ∈ 𝑍10 × 𝑍10 

ii. 𝐿(3,4) ∩ 𝐿(5,6) = {(0,0), (5,0)} ∈ 𝑍10 × 𝑍10 

Hence Axiom 3 is also satisfied. 

Thus, we conclude that the geometric combination 𝑍10 × 𝑍10 is a topology, and the combination (𝑍10, 𝑍10 × 𝑍10) forms a 

topological space. 

(b) For a shifted origin say a line through point (2,3), we check for topological space using the axioms of topology and 

topological space thus. 

Axiom 1: 

𝜑, 𝑋 ∈ 𝜏, here 𝑋 = 𝑍10, 𝜏 = 𝑍10 × 𝑍10. 

Clearly the empty set 𝜑 is an element of the topology. That is 𝜑 = 𝐿(2,3) ∈ 𝜏 = 𝑍10 × 𝑍10 

Again, the whole set 𝑋 is an element of 𝜏 

Hence axiom 1 is satisfied. 

Axiom 2 

Finite union of subset of 𝑍10 × 𝑍10is also an element of 𝑍10 × 𝑍10. 
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Clearly the union of any finite subset of 𝑍10 × 𝑍10 is a member element of 𝑍10 × 𝑍10. That is; 

i. 𝐿(1,1) ∪ 𝐿(2,5) ∪ 𝐿(8,2) ∈ 𝑍10 × 𝑍10 

ii. 𝐿(3,4) ∪ 𝐿(5,6) ∈ 𝑍10 × 𝑍10 

iii. 𝐿(0,5) ∪ 𝐿(5,0) ∪ 𝐿(5,5) = {(2,3)(2,8)(7,3)(7,8)} ∈ 𝑍10 × 𝑍10 

Hence axiom 2 is satisfied 

Axiom 3 

Finite intersection of elements of 𝑍10 × 𝑍10 is again an element of 𝑍10 × 𝑍10 

Clearly the finite intersection of elements of 𝑍10 × 𝑍10 is an element of 𝑍10 × 𝑍10 

i. 𝐿(1,1) ∩ 𝐿(2,5) = (2,3) ∈ 𝑍10 × 𝑍10 

ii. 𝐿(3,4) ∩ 𝐿(5,6) = {(2,3), (7,3)} ∈ 𝑍10 × 𝑍10 

Hence axiom 3 is satisfied. 

Thus, we conclude that the geometric combination 𝑍10 × 𝑍10 is a topology, and the combination (𝑍10, 𝑍10 × 𝑍10) forms a 

topological space, taking the shifted arbitrary origin. 

7 CONCLUSION  

Lines in finite geometry were studied. This paper focused on the relationships within subgeometries of a finite geometry. As 

an extension of our previous work in 18, lines in finite geometry were defined about arbitrary points. It was named a shifted 

origin. Our findings confirmed an existence of topology by taking a set which in our work represents points in a finite 

geometry and collection of all its subgeometries as the subset.  
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