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Abstract. Detecting Distributed Denial of Service (DDoS) attacks in cyber-physical systems, particularly smart grids, 

requires highly accurate and efficient solutions. This study evaluates the performance of several machine learning 

algorithms, including Logistic Regression, Naive Bayes, K-Nearest Neighbors, Decision Trees, Support Vector 

Machine, Random Forest, Gradient Boosting Machines, XGBoost, Artificial Neural Networks, and Recurrent Neural 

Networks for detecting DDoS attacks. The CICIDS2017 dataset, which includes real-world attack scenarios, was used 

for training and testing. The evaluation metrics, such as precision, recall, accuracy, and F1-score, demonstrate 

exceptional performance across most algorithms, with XGBoost achieving perfect scores on all metrics. Other models, 

such as RF, DT, and GBM, also show near-perfect performance, while simpler models like Naive Bayes, though 

slightly lower, still provide viable detection capabilities. These results emphasized the importance of advanced 

machine learning algorithms in ensuring the security and stability of critical infrastructure like smart grids.  
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1   Introduction 

Smart grids are a vital component of modern cyber-physical systems (CPS). They integrate information and 

communication technology (ICT) into electrical power networks, ensuring efficient and reliable energy distribution [1]. 
However, this convergence of digital and physical systems also introduces vulnerabilities, particularly in cyberattacks 

such as Distributed Denial of Service (DDoS) [2]. A DDoS attack aims to overwhelm communication networks or 

services by flooding them with excessive traffic, thereby disrupting normal operations [3]. 
Machine learning (ML) models offer significant potential for detecting these attacks by identifying patterns and 

anomalies within network traffic data [4]. The critical challenge is selecting and evaluating the most effective 

classification algorithms that can function in real time and accurately detect DDoS attacks without compromising the 

smart grid’s performance [5]. 
In this paper, we present an experimental analysis of ten machine-learning classification algorithms used for DDoS 

detection on cyber-physical system in smart grids. These algorithms were evaluated based on crucial performance 

metrics: precision, recall, accuracy, and F1-score. The primary objective is to identify the most effective algorithm for 

enhancing DDoS detection and strengthening the cyber-physical system security in smart grid. 

 

 

2 Related Work 
This review assesses various studies on cyber-physical systems (CPS) and smart grid environments, focusing on 

detecting and mitigating Denial of Service (DoS) and Distributed Denial of Service (DDoS) attacks using a range of 

machine learning and statistical techniques. 

[6] combined rule-based and machine-learning methods for detecting DDoS attacks in CPPS, achieving a weighted 

accuracy of 98.71% and real-time solid performance. Future research is needed to extend its applicability to broader 

contexts. 

 [7] introduced a Hierarchical Bayesian Network (HBN) model enhanced by bacterial foraging optimization (BFO) 

to defend CPS against DoS attacks. The model achieved high accuracy (98.4%) and low RMSE (0.0617), demonstrating 

scalability for large-scale CPS. However, its computational demands are a significant limitation. 

[8] proposed a hybrid machine-learning technique for detecting DDoS attacks in smart grids. The technique achieves 

83.23% accuracy with moderate precision, recall, and F1-score. Despite its novel approach, the model requires 

substantial improvements in precision and recall. 

[9] used Decision Tree, Random Forest, K-Nearest Neighbors and PCA for DDoS detection in Industry 4.0 CPPS, 

achieving near-perfect accuracy and F1-scores. The study highlighted the superior performance of supervised models but 

noted challenges in unsupervised learning. 
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[10] proposed a sequential supervised machine learning approach using a two-layer hierarchical Random Forest 

Classifier (RFC) for cyber-attack detection in smart grids. The model achieved 95.44% accuracy, effectively handling 

data imbalance and feature reduction, but preprocessing improvements are necessary. 

[11] explored ensemble learning methods for anomaly detection in smart grids, with stacking-based ensembles 

achieving the highest accuracy (97.3%). Despite their effectiveness, the models’ complexity and varying performance 

across methods pose challenges. 

[12] developed a machine learning-based detection model for DoS attacks in smart grids, employing SVM, Decision 

Tree, and Naive Bayes classifiers. The model showed strong performance with precision, recall, and F1-score all at 0.97, 

though further refinement is needed. 

[13] focused on enhancing SCADA system security against DDoS attacks using Naive Bayes, J48 and Random 

Forest algorithms. Random Forest showed the highest accuracy (99.99%), but the study’s reliance on the KDDCup'99 

dataset limits its real-world relevance. 

[14] applied shallow and deep auto-encoders with Multiple Kernel Learning (MKL) for DDoS detection in smart 

grids, achieving high accuracy (97%) and robust feature learning. The model outperformed state-of-the-art methods but 

requires optimization for larger datasets. 

[15] proposed an intrusion detection system using data mining techniques, achieving high accuracy (98.94%) and an 

AUC of 0.999. However, the study does not address the computational costs or complexity of the approach. 

 

3.Methodology 

3.1 Dataset 

The dataset used for the evaluation is CICIDS2017, which was due to its extensive range of current attack scenarios, 

which meet real-world conditions and are widely available and used in the cybersecurity community. Furthermore, it 

includes results from CICFlowMeter network traffic analysis, with flows categorized by source, timestamp, destination 

IP addresses, destination ports, protocols, and attack types [16], [5].  

 

Table 1: Database Description 

 

3.2 Experimental Evaluation and Metrics 

The algorithms were implemented through experimentation in Google Colab using Python code with the 

CICIDS2017 cyber security dataset. The models are evaluated using the following metrics [18], [19]. 

Accuracy: The proportion of correctly classified instances. 

Accuracy =
TP + TN

TP + TN + FN + FP
 = +

True Positive 

Total Predicted Positive
     (1) 

Precision: The ability of the classifier to avoid false positives. 

Precision =
TP

TP + FP
 = +

True Positive 

Total Predicted Positive
      (2) 

Recall: The ability of the classifier to detect all true positives. 

Recall =
TP

TP + FN
 = +

True Positive 

Total Predicted Positive
       (3) 

F1-Score: The harmonic mean of precision and recall, providing a balance between the two. 

F1 − score =
2 × (Precision × Recall)

Precision + Recall
 = +

True Positive 

Total Predicted Positive
     (4)  

 

3.3 Model Training and Testing 

The data was split into training (80%) and validation/testing (20%) sets, ensuring a balanced model training and 

evaluation approach. The models are trained using the training data and evaluated using the testing data. 

 

3.4 Feature Selection 

In this critical phase of the machine learning process, the focus was on data preprocessing and feature selection to 

optimize model performance and predictive accuracy. The process began with identifying and engineering key features 

that significantly impact resilience, ensuring they effectively capture the relationships within the dataset. Data cleaning 

Dataset Total number of features BENIGN DDoS Total 

CICIDS2017 78 97718 128027 225745 



 

 

 

 

was the first step, replacing NaN and infinite values with the mean of the respective columns. Next, features were 

converted to numerical values using a standard scaler, as shown in equation 5, while labels were encoded, with benign 

represented as 0 and DDoS as 1 using equation 6. The dataset was then normalized to a uniform range of [0, 1] to reduce 

feature discrepancies.  

 

 
Fig 1: Heatmap of the best features in the Dataset 

 

 

 

 

 𝜎 = √∑ (𝑥𝑖 − 𝜇)2𝑛
𝑖=1         (5) 

𝑧 = 𝑓(𝑥) = 𝜎 (W𝑒𝑥 + 𝑏𝑒)        (6) 

 

In this paper, ten (10) machine-learning classification algorithms for the detection of DDoS attack on cyber-physical 

systems were evaluated through experimentation. The algorithms are discussed as follows [20], [21]. 

i. Random Forest: This is an ensemble learning technique that creates multiple decision trees and combines their 

outputs to enhance accuracy in classification or regression tasks. It is resistant to overfitting and performs well with noisy 

data. 

ii. Support Vector Machine (SVM): A powerful classification algorithm that finds the best hyperplane to divide 

data points into distinct classes. SVMs are effective in high-dimensional spaces and can handle both linear and non-linear 

data using kernel functions. 

iii. K-Nearest Neighbors (KNN): An instance-based learning algorithm that classifies data points by considering the 

majority class among their nearest 'k' neighbors. Although simple and intuitive, KNN can be computationally demanding 

with large datasets. 

iv. Decision Trees: These models split data based on feature values, forming a tree-like structure where each node 

represents a decision rule, and each leaf node represents an outcome. They are easy to understand but can overfit if not 

appropriately pruned.. 

v. Artificial Neural Networks (ANNs): Inspired by the human brain, these computational models consist of layers 

of interconnected neurons. ANNs can learn complex patterns in data and are fundamental to deep learning, though they 

require large amounts of data and significant computational power. 

vi. Naive Bayes: A probabilistic classifier that applies Bayes' theorem with the assumption of feature independence. 

Despite this simplification, it performs effectively in tasks like text classification, where the assumption approximately 

holds. 

vii. Gradient Boosting Machines (GBM): An ensemble method that sequentially builds models, with each new 

model aimed at correcting the errors of its predecessors. By combining weak learners, typically decision trees, GBMs 

create a robust predictive model that often yields high accuracy. 



 

 

 

 

viii. Logistic Regression: A linear model for binary classification that estimates the likelihood of a particular 

outcome based on input features. It is simple, interpretable, and effective when the relationship between variables and the 

outcome is roughly linear. 

ix. Extreme Gradient Boosting (XGBoost): A refined version of gradient boosting that is highly efficient and 

scalable. XGBoost is known for its speed and accuracy, making it a popular choice in machine learning competitions, 

especially for large datasets. 

x. Recurrent Neural Networks (RNNs): These neural networks are designed for sequential data, with connections 

that form directed cycles. RNNs are particularly suitable for tasks like time series analysis and natural language 

processing but may encounter difficulties with long-term dependencies due to issues such as vanishing gradients. The 

detection framework of the DdoS attack using ten diffirent alogorithm is illustred in Figure 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig 2: DDoS Detection Framework 

 

 

4. Results 
The performance of each machine learning model is summarized in Table 2 

 

Algorithms Accuracy (%) Precision (%) Recall (%) F1 score (%) 

Random Forest 99.99 99.99 99.99 99.99 

SVM 99.86 99.86 99.86 99.86 

XGBOOST 100.00 100.00 100.00 100.00 

Logistic 

Regression 

99.82 99.82 99.82 99.82 

GBM 99.98 99.98 99.98 99.98 

Naive Bayes 98.73 98.75 98.73 98.72 

Decision Tree 99.99 99.99 99.99 99.99 

KNN 99.98 99.98 99.98 99.98 

ANN 99.91 99.91 99.91 99.91 

RNN 99.86 99.86 99.86 99.86 

 

The results on Table 2 reveal exceptionally high performance across various machine learning algorithms, with 

accuracy, precision, recall, and F1 scores consistently exceeding 98%. XGBoost stands out with perfect scores of 100% 

across all metrics, indicating flawless performance, likely due to its advanced boosting techniques that effectively 

minimize errors. RF, DT, and GBM also show near-perfect results, with scores of 99.99%, underscoring their robustness 

and effectiveness in handling complex datasets. ANNs, SVM and RNNs exhibit robust and consistent performance, each 

achieving 99.86% across all metrics, reflecting their capability to model intricate relationships within data KNN and LR 

also deliver excellent outcomes, with scores of 99.98% and 99.82%, respectively. While Naive Bayes lags slightly 

behind the others, with scores around 98.73%, it still performs commendably, given its simplicity and the assumption of 

feature independence. Overall, these results highlight the exceptional capability of each algorithm, with XGBoost, RF, 

and GBM leading in performance and even the slightly lower-scoring NB remaining a viable option. Figure 3 depicts the 

comparison of the algorithms. Confusion Matrix(CM) and Receiver Operating Characteristics (ROC) is presented in 

Figure 4 to 22 respectively. 

 



 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 3. Comparisons of the performance of Machine Learning Algorithms 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 4: CM of RM Algorithm     Fig 5: CM of RNN Algorithm 

 Fig 6: CM of ANN Algorithm Fig7: CM of DT Algorithm 



 

 

 

 

 

 

 

 

 

Fig. 8: CM of SVM Algorithm 

 

 

 

 

 

 

 

 

 

 

 

 
Fig 9: CM of GBM Algorithm 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig 10: CM of NB Algorithm 

 

 

 

 
Fig 11: CM of XGB Algorithm 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig 12: CM of KNN Algorithm 

 

 

 

 

 

 

 

 

 

 

 
Fig 14: ROC of SVM Algorithm 

 

Fig 15: ROC of RNN Algorithm 

 

 

 

 

Fig 13: CM of LR Algorithm 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig 16: ROC of NB Algorithm 

 

 

Fig 17: ROC of XGB Algorithm 

 

 

 

 

 

 

 

 

 

Fig 18: ROC of RF Algorithm 

 
Fig 19: ROC of KNN Algorithm 

 

Fig 20: ROC of DT Algorithm 

 

 

 

 

 

 

 

 

 

Fig 21: ROC of ANN Algorithm 

 

 

 
Fig 22: ROC of LR Algorithm 

 

 
 

 

 

Fig 23: ROC of GBM Algorithm 

 

 

6. Discussion 

This study comprehensively evaluates various machine learning algorithms for detecting DDoS attacks in cyber-

physical systems, especially smart grids. Most algorithms performed exceptionally well, with accuracy, precision, recall, 

and F1 scores exceeding 98%. XGBoost achieved perfect scores across all metrics, demonstrating flawless detection 

capabilities. Random Forest, Decision Trees, and GBM also showed near-perfect results at 99.99%, highlighting their 

robustness. SVM, ANNs, and RNNs followed closely with 99.86%, while KNN and Logistic Regression achieved 

99.98% and 99.82%, respectively. Although Naive Bayes performed slightly lower at 98.73%, it remained a viable 

option due to its simplicity. The study emphasizes the effectiveness of advanced algorithms, particularly XGBoost, RF, 

and GBM, for real-time DDoS detection in smart grids. 

 



 

 

 

 

7. Conclusion 

This study evaluates various machine learning algorithms for detecting DDoS attacks on cyber-physical system in 

smart grids, showing that most achieved over 99% accuracy, precision, recall, and F1-score. XGBoost was the top 

performer with flawless detection, while Random Forest, Decision Trees, and Gradient Boosting Machines also 

demonstrated near-perfect results. Simpler models like Naive Bayes performed slightly lower but remained effective in 

specific contexts. The study underscores the crucial role of machine learning in ensuring the security of cyber-physical 

systems. It suggests future research focus on integrating these models into real-time detection systems for enhanced 

practical application. 
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