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Abstract 
This study presents an explainable classifier for identifying Plasmodium species and life stages from thin smear images by 

integrating Convolutional Neural Networks (CNNs) with Pathogen Ontology. Using the CDC Thin Smear dataset, the 

model applies SegNet for pixel-wise semantic segmentation, identifying features like infected red blood cells, ring forms, and 

gametocytes. Ontological reasoning maps visual features to structured biological concepts, producing interpretable outputs 

(e.g., "Parasitized: hasCleft AND hasDots"). This approach enhances diagnostic transparency, enabling clinicians to 

understand the AI’s decisions. Additionally, Grad-CAM visualizations support explainability by highlighting relevant image 

regions, fostering trust in the system. The combination of deep learning and ontology ensures real-time, reliable malaria 

diagnostics, reducing human error while maintaining clinical relevance.  
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1 Introduction 

The detection of Plasmodium falciparum (Pf), the parasite responsible for severe cases of malaria, is a critical task in 

healthcare, particularly in malaria-endemic regions [1]. Traditionally, identification of Pf is performed through manual 

microscopic examination of blood smear images, which is labor-intensive, time-consuming, and subject to human error [2]. 

Automation of this process has gained momentum, with advances in machine learning, particularly Convolutional Neural 

Networks (CNNs), driving research in this domain [2] [3] [5]. A recent trend within this context is the use of ontology-based 

frameworks combined with CNNs, which aim to enhance the explainability and transparency of model decisions, crucial for 

healthcare applications where interpretability is essential [2]. 
Furthermore, integrating explainability into AI-driven malaria diagnosis is essential to build trust, ensure transparency, and 

enhance clinical decision-making [6]. While AI models can achieve high accuracy in detecting and classifying Plasmodium 

parasites, understanding the reasoning behind their predictions is crucial, especially in medical contexts where lives are at 

stake [6][7]. Explainable AI provides insights into which features, such as specific morphological or color patterns, 

influenced the diagnosis, allowing clinicians to verify the system's output [2][8]. This interpretability helps ensure that AI 

models are not making decisions based on irrelevant data or hidden biases, reducing the risk of misdiagnosis. Additionally, by 

offering clear, interpretable explanations, AI systems can facilitate collaboration between healthcare providers and AI tools, 

enabling clinicians to trust and confidently act on AI-generated insights [2].  

To this end, current challenges faced by explainability techniques in AI-driven malaria diagnosis stem from the complexity of 

medical data and the intricacies of AI models [9]. Many deep learning models, particularly those used for image analysis, 

operate as "black boxes," making it difficult to interpret how they arrive at their decisions [8]. This lack of transparency 

becomes critical when diagnosing diseases like malaria, where a wrong diagnosis can have serious consequences[9]. Another 

challenge is ensuring that these explanations are relevant and reliable across diverse patient populations and environments, 

particularly in low-resource settings where training data might be limited[9][10]. Balancing model complexity with 

interpretability, while avoiding oversimplifications that could compromise diagnostic accuracy, remains a significant hurdle 

in integrating explainability into AI-driven healthcare solutions. This work is an effort towards providing models which can 

provide reliable and human understandable explanations as basis for their decisions. 
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2 Review of Related Literature 
The identification of malaria parasites from thin blood smear images has traditionally relied on manual microscopic analysis. 

However, due to the inherent variability in image quality and the expertise required, several automated systems have been 

proposed [2]. For instance, [9] explored deep learning models to classify different stages of malaria parasites, using CNNs to 

achieve high accuracy. Their work demonstrated the utility of CNNs in handling complex biological images, enabling 

automatic detection of parasites and their life cycle stages. Similarly, [10] leveraged a CNN-based model for Pf identification, 

achieving high accuracy with deep feature extraction. These methods, though effective, often function as "black-box" models, 

providing little insight into the decision-making process. 

CNNs have shown remarkable success in medical image classification due to their ability to automatically learn hierarchical 

features from input images [11]. In particular, CNN architectures such as VGG, ResNet, and Inception have been widely 

applied in medical diagnosis tasks, including malaria detection from blood smears [6]. One of the key benefits of CNNs is 

their capacity to reduce the reliance on handcrafted features, a common challenge in traditional image analysis methods. 

Instead, CNNs automatically learn features at different levels of abstraction, allowing them to capture intricate patterns and 

structures within biological images [12]. 

 

Despite their efficacy, the use of CNNs in medical diagnostics faces a significant challenge in terms of interpretability. 

Medical practitioners demand transparent models that explain why certain decisions are made, which is particularly important 

when such decisions influence critical healthcare outcomes [13]. In this regard, ontology-based frameworks are becoming an 

important tool for augmenting CNN models with interpretability[14].  

 

Ontology-based systems provide a formal representation of knowledge in a specific domain, making them ideal for tasks 

requiring structured data and reasoning [14]. In medical diagnostics, ontologies are used to organize and represent complex 

biological knowledge, enhancing both the accuracy and transparency of decision-making systems. According to [15], 

ontologies in healthcare serve as a structured knowledge base, enabling the explanation of system outputs by linking 

decision-making processes to domain-specific knowledge. When applied to CNN models for malaria detection, ontology-

based systems help enhance explainability by mapping learned features to known biological entities and processes. For 

example, [15] integrated an ontology-based framework with CNNs to explain model predictions by associating visual 

features with established clinical knowledge. Their study highlights that ontology-based systems can mitigate the black-box 

nature of CNNs, offering more transparent and interpretable models. Additionally, ontologies provide a mechanism for 

validating model predictions against domain knowledge, further enhancing trust in the automated system. 

 

The combination of ontology and CNNs addresses this gap. By embedding domain knowledge in the form of ontologies, 

models can provide not only visual explanations but also logical reasoning aligned with the biological characteristics of 

Plasmodium falciparum. For instance, [16] proposed a hybrid ontology-based CNN system for malaria detection, wherein 

ontologies provided the underlying reasoning that complemented the model's visual output, leading to a more transparent and 

reliable system. 

 
While ontology-based CNN models show promise in improving the identification of Plasmodium falciparum, several 

challenges remain. One key challenge is the development of comprehensive ontologies that accurately represent the complex 

biological structures and life cycles of malaria parasites [15]. Another challenge is the integration of these ontologies with 

deep learning models without compromising model performance. Furthermore, there is a need for robust evaluation 

frameworks to assess the interpretability and explainability of ontology-based CNN models, especially in high-stakes medical 

scenarios [17][18]. 

3 Methodology 

Using the Kaggle Malaria dataset, which contains labeled images of red blood cells infected with Plasmodium falciparum 

and healthy cells of around 27,558 images across two classes: parasitized and uninfected, a Convolutional Neural Network 

(CNN) with an input layer for 64x64x3 images, followed by 3 convolutional layers with 32, 64, and 128 filters (each using 

3x3 kernels), ReLU activation function, and 2x2 max-pooling after each convolution, two fully connected layers (e.g., 256 

and 128 neurons), followed by a softmax output layer for binary classification (infected vs. healthy cells), with dropout (e.g., 

0.5 rate) and batch normalization to prevent overfitting and stabilize learning is trained on this dataset. To ensure proper 

training, we pre-processed the images by normalizing pixel values and augmenting the dataset to improve generalization. 
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Next, we incorporate the Pathogen Ontology, a structured framework of biological knowledge that categorizes pathogens, 

including Plasmodium falciparum. This ontology helps us align our model with relevant biological concepts, integrating 

domain knowledge into the AI model’s learning process. By associating model outputs with the corresponding pathogen class 

in the ontology, we can map the prediction of the CNN to the biological meaning, aiding in interpretability.  
To enhance explainability further, we employ Grad-CAM (Gradient-weighted Class Activation Mapping), a technique that 

visualizes the areas of input images that the CNN uses to make its predictions. By applying Grad-CAM to the trained 

classifier, we can produce heatmaps over the images, highlighting the regions of red blood cells where the model "looks" to 

identify Plasmodium falciparum infection[22]. These visualizations allow medical professionals to verify whether the model 

focuses on biologically relevant regions, such as certain parts of infected cells, making the system more transparent and 

trustworthy in real-world diagnostic scenarios. 

 

4 Proposed Method 

a) Define C  = { c1,c2,….cn}, the classes from the ontology which serve as the output of the classification.  

b) Define D = {d | ∃ c ∈ C, d ≡ c is a valid axiom of the ontology} i.e. definitions of concepts in the ontology 

Let P: be a set of concepts (features) in the ontology involved in D.  

Let R: be a set of relationships such as R = {r | r =relationship(p), p ∈ P }  

Let F: be a set of ontological features f ∈ F, that is the triplets (c, p, r) in D which will be used to explaining the 

classification.  

c) Build a set FI ⊆ F of ontological features that match the features of the data point input to the classifier such that FI 

= {fi ∈ F | fi ≡ ∃ p.r } 

d) Build an ontological reasoning from D and FI such that CI ⊆ C, for the classified data point ci. 

e) apply DI ⊆ D such that DI = {di ≡ ci } and FI to generate an explanation for CI. 

 

It is important to note that step (c) refines step (b), as constructing F with ontological features that cannot be extracted from 

the classified data would be ineffective. Additionally, the abstraction level of the explanations is inherently connected to the 

abstraction level of the ontological features used. Indeed, the refinement of features ensures that only ontological elements 

that can be reliably extracted from thin smear images are included in the model’s explanations. It would be inefficient to 

incorporate features that the classifier cannot detect, such as cellular structures beyond what the microscope captures. The 

abstraction level of explanations corresponds to the granularity of the ontological features—for example, the model can 

explain that a region contains P. falciparum because it detects a ring form or gametocyte, but it cannot further explain the 

molecular composition of these forms. This reflects a broader principle in explainable AI: at some level of abstraction, 

explanations are deemed sufficient without needing deeper detail. Similar to other models combining CNNs and ontologies, 

the malaria classifier connects image-based outputs (e.g., identifying parasites) with semantic labels from the pathogen 

ontology, ensuring explanations are understandable and clinically useful without attempting to define underlying biological 

processes [20].  

 

5 Explanation Pipeline   

This section outlines the implementation of our approach, which consists of two primary modules. The first is a semantic 

segmentation (DL) module, responsible for extracting ontological features from the input image. The second is an 

ontological reasoning module, referred to as OntoClassifier, which computes the set of classes (CI) that can be inferred 

from the identified features (FI) while generating corresponding explanations [19]. The design of these modules is detailed as 

follows:  

Semantic Segmentation   

The semantic segmentation process plays a crucial role in identifying and classifying specific regions within microscopic 

blood smear images. The objective is to analyze thin smear images to detect Plasmodium species (e.g., P. falciparum, P. 

vivax) and distinguish between infected and uninfected red blood cells (RBCs). Each pixel in the image is labeled to 

correspond to a meaningful biological class, such as parasite types, healthy cells, or background. To achieve this, the 

segmentation process uses the SegNet architecture, which is well-suited for pixel-wise labeling, ensuring that every part of 
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the image is accounted for. This segmentation is not merely visual but also integrates semantic meaning through pathogen 

ontology, making the results explainable to clinicians. 

The SegNet architecture is employed as the core model for the semantic segmentation task. It consists of an encoder-

decoder network that reduces the input image's dimensions through max-pooling operations (in the encoder) to extract key 

features and then upsamples them (in the decoder) to reconstruct the segmentation mask. This structure ensures that 

important spatial information is retained while achieving efficient pixel-level classification [19]. The CDC Thin Smear 

dataset is used to train the SegNet model, with annotated images containing examples of both infected and uninfected 

RBCs. The dataset provides detailed masks indicating the presence of parasites, specific Plasmodium species, and 

background regions, which are essential for training the model to distinguish subtle visual features. By correctly segmenting 

the microscopic regions, the model provides granular insights into the health status of each RBC in the sample [21]. 

The integration of Pathogen Ontology ensures that the segmentation results carry semantic meaning and are aligned with 

established biomedical knowledge. Once the SegNet model segments the regions corresponding to different parasite species 

or uninfected cells, these segmented areas are mapped to ontological terms that represent the biological identity of each 

structure (e.g., NCBITaxon:5833 for P. falciparum). This mapping ensures that the predictions are not only accurate but also 

meaningful within a clinical and scientific context . The use of pathogen ontology provides explainability, making the 

model’s output interpretable to clinicians by linking segmented areas to standardized biological identifiers. This semantic 

segmentation process supports diagnostic transparency by clarifying which regions contributed to the classification, thereby 

enhancing trust and enabling more informed decision-making in malaria diagnosis. This is presented in figure 1 

 

 

 

OntoClassifier   

The presence of pixels in a segmentation layer signifies the existence of a corresponding ontological feature. That is why the 

semantic segmentation process utilizes a Convolutional Neural Network (CNN) to analyze thin smear images, identifying 

ontological features such as ring forms, schizonts, and gametocytes as individual pixels in the segmentation mask. Each 

detected pixel is associated with an ontological assertion (e.g., (∃ hasFeature . parasite)), allowing the classifier to compile 

a set of satisfied assertions (FI) for each image. The model then employs a reasoning mechanism using a defined set of 

relationships from the Pathogen Ontology to deduce the corresponding classes (CI) that accurately label the image, such as 

identifying P. falciparum based on the observed features. While traditional methods for ontological reasoning can be slow 

Figure 1: Architecture of the Ontologically explainable classifier [19]. 
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and resource-intensive, this classifier effectively integrates deep learning capabilities with ontological mapping to ensure 

efficient, real-time classifications while maintaining explainability in identifying specific malaria parasites.  

6 Result  

The result presented here are three instances from CDC dataset as outlined above. Two of the test cases are parasitized while 

one is non-parasitized. The explanations generated are based on the structured of the pathogen ontology and the result of 

semantic segmentation. 

 

From figure 3, the explanation "Parasitized: hasCleft (Maurer's Cleft) AND hasDots (Schuffner's Dots)" signifies that the 

ontology-based explainable model has analyzed the thin smear image and identified specific morphological features 

Figure 2: Structure for Generating an OntoClassifier [19] 

Figure 3: Structure for Generating an OntoClassifier [19] 

Figure 4: Example of Parasitized Input Image and the corresponding Output Explanation 
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indicative of Pf infection. During the segmentation process, the model utilizes deep learning techniques to accurately detect 

regions within the image where Maurer's clefts, which are associated with the developmental stage of the parasite, and 

Schuffner's dots, which appear in infected red blood cells, are present. By referencing a defined ontology that links these 

features to their corresponding biological terms, the model classifies the image as "Parasitized." The assertion "hasCleft AND 

hasDots" indicates that both features are observed, suggesting a more detailed characterization of the infection and allowing 

clinicians to understand the specific pathological changes associated with the malaria parasite in the examined sample. This 

reasoning integrates visual analysis with semantic knowledge, providing a meaningful and clinically relevant output.  

 

 

From Figure 4 the explanation "Parasitized: hasTrophozoite (Trophozoite) AND hasGametocyte (Gametocyte)" indicates that 

the ontology-based explainable model has identified specific features within the thin smear image corresponding to two 

distinct stages of the Plasmodium species lifecycle. The model first segments the image into various regions using a semantic 

segmentation approach, detecting individual pixels associated with infected red blood cells. It recognizes the presence of 

trophozoites, which are the active feeding stage of the parasite, as well as gametocytes, which are the sexual forms that can 

be taken up by mosquitoes. By leveraging a predefined ontology that defines these relationships, the model classifies the 

image as "Parasitized" based on the detection of both features. The logical assertion "hasTrophozoite AND hasGametocyte" 

reflects that both stages are present in the analyzed image, allowing for a comprehensive understanding of the infection status 

and the specific life cycle stages of the parasites present. This reasoning process combines visual data with semantic 

knowledge from the ontology, ensuring an interpretable and clinically relevant classification. 

 

 

Figure 5: Another example of a Parasitized Image Input and a Corresponding Explanation 
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From Figure 5, the output "Non-parasitized: hasNo (Egg) AND hasNo (Parasite)" indicates that the ontology-based 

explainable model has analyzed the thin smear image and determined that it does not contain any signs of malaria infection. 

During the semantic segmentation process, the model examines the image for specific features that would indicate the 

presence of parasites, such as Plasmodium species or their developmental stages (like eggs). In this case, the model 

successfully identifies that there are no egg structures and no parasites present in the segmented regions of the image. By 

utilizing a predefined ontology, the model classifies the image as "Non-parasitized" based on the logical assertions "hasNo 

(Egg) AND hasNo (Parasite)," confirming the absence of any parasitic infection. This output provides a clear and 

interpretable result for clinicians, indicating that the thin smear does not show evidence of malaria, which is essential for 

accurate diagnosis and treatment decisions.  

 

7 Conclusion 

The integration of ontology-based systems with CNN models offers a promising avenue for the development of explainable 

AI in medical diagnostics, particularly for malaria detection. By providing structured knowledge and reasoning frameworks, 

ontologies enhance the transparency and interpretability of CNN predictions, addressing one of the key challenges in the 

application of deep learning in healthcare. As research in this area advances, ontology-based explainable models have the 

potential to significantly improve the accuracy, trust, and reliability of automated malaria detection systems. 

Future research should focus on refining ontology frameworks, enhancing their alignment with CNN-based feature 

extraction, and developing standardized evaluation metrics for explainability in medical AI systems. Additionally, efforts 

should be made to ensure that ontology-based systems can scale across different diagnostic tasks and medical conditions, 

thereby broadening their applicability. 

 

 

 

 

 

 

 

 

 

Figure 6: Example of Non-Parasitized Input Image with Corresponding Explanation 
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